Size dependent thermodynamic properties of nanoparticles
Surface effect and crystal structure lead to formulating a theoretical model to study the influences of size on thermodynamic parameters, such as melting temperature, Debye temperature, melting entropy and specific heat capacity, of nanoparticles. The cohesive energy as a thermodynamic quantity was...
Gespeichert in:
Veröffentlicht in: | International Journal of Thermodynamics 2020-01, Vol.23 (4), p.245-250 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Surface effect and crystal structure lead to formulating a theoretical model to study the influences of size on thermodynamic parameters, such as melting temperature, Debye temperature, melting entropy and specific heat capacity, of nanoparticles. The cohesive energy as a thermodynamic quantity was used to relate the ratio of surface area to volume of nanomaterial with thermodynamic properties which depend on size of the nanomaterial. In this contribution, Si and Au nanoparticles were considered to study due to their potential applications in science and technology. It was found that melting temperature, Debye temperature, melting entropy of nanoscale size material is decreased with decreasing the size up to their critical sizes. Whereas, the specific heat capacity tends to enhance with reduction in nanoparticle size. The present results for melting temperature, melting entropy and Debye temperature are compared with experimental and theoretical observations and adequate agreements are observed. |
---|---|
ISSN: | 1301-9724 2146-1511 |
DOI: | 10.5541/ijot.771458 |