On the periodicity of the solution of a rational difference equation
In this paper, some cases on the periodicity of the rational difference equation S_{n+1}=S_{n-p}(((aS_{n-q}+bS_{n-r}+cS_{n-s})/(dS_{n-q}+eS_{ n-r}+fS_{n-s}))), are investigated, where a, b, c, d, e, f ∈(0,∞). The initial conditions S_{-p}, S_{-p+1},...,S_{-q}, S_{-q+1},...,S_{-r}, S_{-r+1},...,S_{-s...
Gespeichert in:
Veröffentlicht in: | Communications Series A1 Mathematics & Statistics 2019-07, Vol.68 (2), p.1427-1434 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, some cases on the periodicity of the rational difference equation
S_{n+1}=S_{n-p}(((aS_{n-q}+bS_{n-r}+cS_{n-s})/(dS_{n-q}+eS_{ n-r}+fS_{n-s}))),
are investigated, where a, b, c, d, e, f ∈(0,∞). The initial conditions S_{-p}, S_{-p+1},...,S_{-q}, S_{-q+1},...,S_{-r}, S_{-r+1},...,S_{-s},...,S_{-s+1},...,S₋₁ and S₀ are arbitrary positive real numbers such that p>q>r>s≥0. Some numerical examples are provided to illustrate the theoretical discussion. |
---|---|
ISSN: | 1303-5991 |
DOI: | 10.31801/cfsuasmas.535865 |