Spectral expansion of Sturm-Liouville problems with eigenvalue-dependent boundary conditions

In this paper, we consider the operator L generated in L₂(R₊) by the differential expression l(y)=-y′′+q(x)y,x∈R₊:=[0,∞) and the boundary condition ((y′(0))/(y(0)))=α₀+α₁λ+α₂λ², where q is a complex valued function and α_{i}∈C,[mbox] \mbox{\:} i=0,1,2α₂. We have proved that spectral expansion of L i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications Series A1 Mathematics & Statistics 2019-07, Vol.68 (2), p.1316-1334
Hauptverfasser: Yokuş, Nihal, Kır Arpat, Esra
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we consider the operator L generated in L₂(R₊) by the differential expression l(y)=-y′′+q(x)y,x∈R₊:=[0,∞) and the boundary condition ((y′(0))/(y(0)))=α₀+α₁λ+α₂λ², where q is a complex valued function and α_{i}∈C,[mbox] \mbox{\:} i=0,1,2α₂. We have proved that spectral expansion of L in terms of the principal functions under the condition q∈AC(R₊), lim_{x→∞}q(x)=0, sup[e^{ε√x}|q′(x)|]0 taking into account the spectral singularities. We have also proved the convergence of the spectral expansion.
ISSN:1303-5991
DOI:10.31801/cfsuasmas.526270