Spectral expansion of Sturm-Liouville problems with eigenvalue-dependent boundary conditions
In this paper, we consider the operator L generated in L₂(R₊) by the differential expression l(y)=-y′′+q(x)y,x∈R₊:=[0,∞) and the boundary condition ((y′(0))/(y(0)))=α₀+α₁λ+α₂λ², where q is a complex valued function and α_{i}∈C,[mbox] \mbox{\:} i=0,1,2α₂. We have proved that spectral expansion of L i...
Gespeichert in:
Veröffentlicht in: | Communications Series A1 Mathematics & Statistics 2019-07, Vol.68 (2), p.1316-1334 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we consider the operator L generated in L₂(R₊) by the differential expression
l(y)=-y′′+q(x)y,x∈R₊:=[0,∞)
and the boundary condition
((y′(0))/(y(0)))=α₀+α₁λ+α₂λ²,
where q is a complex valued function and α_{i}∈C,[mbox] \mbox{\:} i=0,1,2α₂. We have proved that spectral expansion of L in terms of the principal functions under the condition
q∈AC(R₊), lim_{x→∞}q(x)=0, sup[e^{ε√x}|q′(x)|]0
taking into account the spectral singularities. We have also proved the convergence of the spectral expansion. |
---|---|
ISSN: | 1303-5991 |
DOI: | 10.31801/cfsuasmas.526270 |