Dendrites and symmetric products
For a given continuum X and a natural number n, we consider the hyperspace Fn(X) of all nonempty subsets of X with at most n points, metrized by the Hausdorff metric. In this paper we show that if X is a dendrite whose set of end points is closed, n N and Y is a continuum such that the hyperspaces F...
Gespeichert in:
Veröffentlicht in: | Glasnik matematički 2009-05, Vol.44 (1), p.195-210 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For a given continuum X and a natural number n, we consider the hyperspace Fn(X) of all nonempty subsets of X with at most n points, metrized by the Hausdorff metric. In this paper we show that if X is a dendrite whose set of end points is closed, n N and Y is a continuum such that the hyperspaces Fn(X) and Fn(Y) are homeomorphic, then Y is a dendrite whose set of end points is closed. |
---|---|
ISSN: | 0017-095X 1846-7989 |
DOI: | 10.3336/gm.44.1.12 |