Dendrites and symmetric products

For a given continuum X and a natural number n, we consider the hyperspace Fn(X) of all nonempty subsets of X with at most n points, metrized by the Hausdorff metric. In this paper we show that if X is a dendrite whose set of end points is closed, n N and Y is a continuum such that the hyperspaces F...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Glasnik matematički 2009-05, Vol.44 (1), p.195-210
Hauptverfasser: Acosta, Gerardo, Hernandez-Gutierrez, Rodrigo, Martinez-de-la-Vega, Veronica
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For a given continuum X and a natural number n, we consider the hyperspace Fn(X) of all nonempty subsets of X with at most n points, metrized by the Hausdorff metric. In this paper we show that if X is a dendrite whose set of end points is closed, n N and Y is a continuum such that the hyperspaces Fn(X) and Fn(Y) are homeomorphic, then Y is a dendrite whose set of end points is closed.
ISSN:0017-095X
1846-7989
DOI:10.3336/gm.44.1.12