Evaluation Model of the Mental Health Education Effectiveness Based on Deep Neural Networks
This research develops a deep neural network model called DNN-MHE to evaluate mental health education effects. A questionnaire survey collected data on 916 students' mental health knowledge, attitudes, and behaviors. DNN-MHE uses five fully connected layers to predict mental health metrics. Exp...
Gespeichert in:
Veröffentlicht in: | Journal of computing and information technology 2023-03, Vol.31 (1), p.57-72 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 72 |
---|---|
container_issue | 1 |
container_start_page | 57 |
container_title | Journal of computing and information technology |
container_volume | 31 |
creator | Luo, Junmei Deng, Shuchao |
description | This research develops a deep neural network model called DNN-MHE to evaluate mental health education effects. A questionnaire survey collected data on 916 students' mental health knowledge, attitudes, and behaviors. DNN-MHE uses five fully connected layers to predict mental health metrics. Experiments demonstrate that DNN-MHE achieves 99.46% accuracy, outperforming RNN, CNN, and shallow MLP models. Ablation studies validate the impact of training iterations, number of neurons, and number of data samples on performance. Overall, DNN-MHE enables accurate and efficient analysis of mental health education with practical implications for improving university programs. |
doi_str_mv | 10.20532/cit.2023.1005727 |
format | Article |
fullrecord | <record><control><sourceid>gale_hrcak</sourceid><recordid>TN_cdi_hrcak_primary_oai_hrcak_srce_hr_313207</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A780929776</galeid><sourcerecordid>A780929776</sourcerecordid><originalsourceid>FETCH-LOGICAL-c251t-49fe8cbd8900fd09ba87ac65f0360b32152033ab2632a76f1fed44ca795eea8f3</originalsourceid><addsrcrecordid>eNptkUtLxDAUhYsoKDo_wF3AlYuOebRJu_QxPsBR8LFyEe6kN06000qSGfXfG60IA94s7uHwnUvgZNk-o2NOS8GPjItJcTFmlJaKq41sh1WFzEVNq82khaA5Y0JuZ6MQXmgaUUtZsJ3sabKCdgnR9R2Z9g22pLckzpFMsYvQkkuENs7JpFmaAZpYiya6FXYYAjmBgA1J9hniG7nBpU-ZG4zvvX8Ne9mWhTbg6HfvZo_nk4fTy_z69uLq9Pg6N7xkMS9qi5WZNVVNqW1oPYNKgZGlpULSmeCs5FQImHEpOChpmcWmKAyoukSEyordLB_uzr2BV_3m3QL8p-7B6cEJ3mCSWjDBqUr8wcA_Q4vadbaPHszCBaOPVUVrXislEzX-h0qvwYUzfYfWJX8tcLgWSEzEj_gMyxD01f3dOssG1vg-BI_279eM6p9OdepUf3eqfzsVX53Bkyk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Evaluation Model of the Mental Health Education Effectiveness Based on Deep Neural Networks</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Luo, Junmei ; Deng, Shuchao</creator><creatorcontrib>Luo, Junmei ; Deng, Shuchao</creatorcontrib><description>This research develops a deep neural network model called DNN-MHE to evaluate mental health education effects. A questionnaire survey collected data on 916 students' mental health knowledge, attitudes, and behaviors. DNN-MHE uses five fully connected layers to predict mental health metrics. Experiments demonstrate that DNN-MHE achieves 99.46% accuracy, outperforming RNN, CNN, and shallow MLP models. Ablation studies validate the impact of training iterations, number of neurons, and number of data samples on performance. Overall, DNN-MHE enables accurate and efficient analysis of mental health education with practical implications for improving university programs.</description><identifier>ISSN: 1330-1136</identifier><identifier>EISSN: 1846-3908</identifier><identifier>DOI: 10.20532/cit.2023.1005727</identifier><identifier>CODEN: CJCTEM</identifier><language>eng</language><publisher>Sveuciliste U Zagrebu</publisher><subject>Analysis ; Data mining ; deep neural network, mental health education, neuron numbers ; Health aspects ; Health education ; Health surveys ; Machine learning ; Medical personnel ; Mental health ; Neural networks ; Neurons ; Study and teaching ; Surveys ; Training</subject><ispartof>Journal of computing and information technology, 2023-03, Vol.31 (1), p.57-72</ispartof><rights>COPYRIGHT 2023 Sveuciliste U Zagrebu</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://hrcak.srce.hr/logo_broj/24218.jpg</thumbnail><link.rule.ids>230,314,776,780,860,881,27903,27904</link.rule.ids></links><search><creatorcontrib>Luo, Junmei</creatorcontrib><creatorcontrib>Deng, Shuchao</creatorcontrib><title>Evaluation Model of the Mental Health Education Effectiveness Based on Deep Neural Networks</title><title>Journal of computing and information technology</title><description>This research develops a deep neural network model called DNN-MHE to evaluate mental health education effects. A questionnaire survey collected data on 916 students' mental health knowledge, attitudes, and behaviors. DNN-MHE uses five fully connected layers to predict mental health metrics. Experiments demonstrate that DNN-MHE achieves 99.46% accuracy, outperforming RNN, CNN, and shallow MLP models. Ablation studies validate the impact of training iterations, number of neurons, and number of data samples on performance. Overall, DNN-MHE enables accurate and efficient analysis of mental health education with practical implications for improving university programs.</description><subject>Analysis</subject><subject>Data mining</subject><subject>deep neural network, mental health education, neuron numbers</subject><subject>Health aspects</subject><subject>Health education</subject><subject>Health surveys</subject><subject>Machine learning</subject><subject>Medical personnel</subject><subject>Mental health</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Study and teaching</subject><subject>Surveys</subject><subject>Training</subject><issn>1330-1136</issn><issn>1846-3908</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNptkUtLxDAUhYsoKDo_wF3AlYuOebRJu_QxPsBR8LFyEe6kN06000qSGfXfG60IA94s7uHwnUvgZNk-o2NOS8GPjItJcTFmlJaKq41sh1WFzEVNq82khaA5Y0JuZ6MQXmgaUUtZsJ3sabKCdgnR9R2Z9g22pLckzpFMsYvQkkuENs7JpFmaAZpYiya6FXYYAjmBgA1J9hniG7nBpU-ZG4zvvX8Ne9mWhTbg6HfvZo_nk4fTy_z69uLq9Pg6N7xkMS9qi5WZNVVNqW1oPYNKgZGlpULSmeCs5FQImHEpOChpmcWmKAyoukSEyordLB_uzr2BV_3m3QL8p-7B6cEJ3mCSWjDBqUr8wcA_Q4vadbaPHszCBaOPVUVrXislEzX-h0qvwYUzfYfWJX8tcLgWSEzEj_gMyxD01f3dOssG1vg-BI_279eM6p9OdepUf3eqfzsVX53Bkyk</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Luo, Junmei</creator><creator>Deng, Shuchao</creator><general>Sveuciliste U Zagrebu</general><general>Fakultet elektrotehnike i računarstva Sveučilišta u Zagrebu</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>VP8</scope></search><sort><creationdate>20230301</creationdate><title>Evaluation Model of the Mental Health Education Effectiveness Based on Deep Neural Networks</title><author>Luo, Junmei ; Deng, Shuchao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c251t-49fe8cbd8900fd09ba87ac65f0360b32152033ab2632a76f1fed44ca795eea8f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Data mining</topic><topic>deep neural network, mental health education, neuron numbers</topic><topic>Health aspects</topic><topic>Health education</topic><topic>Health surveys</topic><topic>Machine learning</topic><topic>Medical personnel</topic><topic>Mental health</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Study and teaching</topic><topic>Surveys</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Junmei</creatorcontrib><creatorcontrib>Deng, Shuchao</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Hrcak: Portal of scientific journals of Croatia</collection><jtitle>Journal of computing and information technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Junmei</au><au>Deng, Shuchao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation Model of the Mental Health Education Effectiveness Based on Deep Neural Networks</atitle><jtitle>Journal of computing and information technology</jtitle><date>2023-03-01</date><risdate>2023</risdate><volume>31</volume><issue>1</issue><spage>57</spage><epage>72</epage><pages>57-72</pages><issn>1330-1136</issn><eissn>1846-3908</eissn><coden>CJCTEM</coden><abstract>This research develops a deep neural network model called DNN-MHE to evaluate mental health education effects. A questionnaire survey collected data on 916 students' mental health knowledge, attitudes, and behaviors. DNN-MHE uses five fully connected layers to predict mental health metrics. Experiments demonstrate that DNN-MHE achieves 99.46% accuracy, outperforming RNN, CNN, and shallow MLP models. Ablation studies validate the impact of training iterations, number of neurons, and number of data samples on performance. Overall, DNN-MHE enables accurate and efficient analysis of mental health education with practical implications for improving university programs.</abstract><pub>Sveuciliste U Zagrebu</pub><doi>10.20532/cit.2023.1005727</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1330-1136 |
ispartof | Journal of computing and information technology, 2023-03, Vol.31 (1), p.57-72 |
issn | 1330-1136 1846-3908 |
language | eng |
recordid | cdi_hrcak_primary_oai_hrcak_srce_hr_313207 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Analysis Data mining deep neural network, mental health education, neuron numbers Health aspects Health education Health surveys Machine learning Medical personnel Mental health Neural networks Neurons Study and teaching Surveys Training |
title | Evaluation Model of the Mental Health Education Effectiveness Based on Deep Neural Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T15%3A08%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_hrcak&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20Model%20of%20the%20Mental%20Health%20Education%20Effectiveness%20Based%20on%20Deep%20Neural%20Networks&rft.jtitle=Journal%20of%20computing%20and%20information%20technology&rft.au=Luo,%20Junmei&rft.date=2023-03-01&rft.volume=31&rft.issue=1&rft.spage=57&rft.epage=72&rft.pages=57-72&rft.issn=1330-1136&rft.eissn=1846-3908&rft.coden=CJCTEM&rft_id=info:doi/10.20532/cit.2023.1005727&rft_dat=%3Cgale_hrcak%3EA780929776%3C/gale_hrcak%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A780929776&rfr_iscdi=true |