Evaluation Model of the Mental Health Education Effectiveness Based on Deep Neural Networks

This research develops a deep neural network model called DNN-MHE to evaluate mental health education effects. A questionnaire survey collected data on 916 students' mental health knowledge, attitudes, and behaviors. DNN-MHE uses five fully connected layers to predict mental health metrics. Exp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computing and information technology 2023-03, Vol.31 (1), p.57-72
Hauptverfasser: Luo, Junmei, Deng, Shuchao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 72
container_issue 1
container_start_page 57
container_title Journal of computing and information technology
container_volume 31
creator Luo, Junmei
Deng, Shuchao
description This research develops a deep neural network model called DNN-MHE to evaluate mental health education effects. A questionnaire survey collected data on 916 students' mental health knowledge, attitudes, and behaviors. DNN-MHE uses five fully connected layers to predict mental health metrics. Experiments demonstrate that DNN-MHE achieves 99.46% accuracy, outperforming RNN, CNN, and shallow MLP models. Ablation studies validate the impact of training iterations, number of neurons, and number of data samples on performance. Overall, DNN-MHE enables accurate and efficient analysis of mental health education with practical implications for improving university programs.
doi_str_mv 10.20532/cit.2023.1005727
format Article
fullrecord <record><control><sourceid>gale_hrcak</sourceid><recordid>TN_cdi_hrcak_primary_oai_hrcak_srce_hr_313207</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A780929776</galeid><sourcerecordid>A780929776</sourcerecordid><originalsourceid>FETCH-LOGICAL-c251t-49fe8cbd8900fd09ba87ac65f0360b32152033ab2632a76f1fed44ca795eea8f3</originalsourceid><addsrcrecordid>eNptkUtLxDAUhYsoKDo_wF3AlYuOebRJu_QxPsBR8LFyEe6kN06000qSGfXfG60IA94s7uHwnUvgZNk-o2NOS8GPjItJcTFmlJaKq41sh1WFzEVNq82khaA5Y0JuZ6MQXmgaUUtZsJ3sabKCdgnR9R2Z9g22pLckzpFMsYvQkkuENs7JpFmaAZpYiya6FXYYAjmBgA1J9hniG7nBpU-ZG4zvvX8Ne9mWhTbg6HfvZo_nk4fTy_z69uLq9Pg6N7xkMS9qi5WZNVVNqW1oPYNKgZGlpULSmeCs5FQImHEpOChpmcWmKAyoukSEyordLB_uzr2BV_3m3QL8p-7B6cEJ3mCSWjDBqUr8wcA_Q4vadbaPHszCBaOPVUVrXislEzX-h0qvwYUzfYfWJX8tcLgWSEzEj_gMyxD01f3dOssG1vg-BI_279eM6p9OdepUf3eqfzsVX53Bkyk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Evaluation Model of the Mental Health Education Effectiveness Based on Deep Neural Networks</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Luo, Junmei ; Deng, Shuchao</creator><creatorcontrib>Luo, Junmei ; Deng, Shuchao</creatorcontrib><description>This research develops a deep neural network model called DNN-MHE to evaluate mental health education effects. A questionnaire survey collected data on 916 students' mental health knowledge, attitudes, and behaviors. DNN-MHE uses five fully connected layers to predict mental health metrics. Experiments demonstrate that DNN-MHE achieves 99.46% accuracy, outperforming RNN, CNN, and shallow MLP models. Ablation studies validate the impact of training iterations, number of neurons, and number of data samples on performance. Overall, DNN-MHE enables accurate and efficient analysis of mental health education with practical implications for improving university programs.</description><identifier>ISSN: 1330-1136</identifier><identifier>EISSN: 1846-3908</identifier><identifier>DOI: 10.20532/cit.2023.1005727</identifier><identifier>CODEN: CJCTEM</identifier><language>eng</language><publisher>Sveuciliste U Zagrebu</publisher><subject>Analysis ; Data mining ; deep neural network, mental health education, neuron numbers ; Health aspects ; Health education ; Health surveys ; Machine learning ; Medical personnel ; Mental health ; Neural networks ; Neurons ; Study and teaching ; Surveys ; Training</subject><ispartof>Journal of computing and information technology, 2023-03, Vol.31 (1), p.57-72</ispartof><rights>COPYRIGHT 2023 Sveuciliste U Zagrebu</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://hrcak.srce.hr/logo_broj/24218.jpg</thumbnail><link.rule.ids>230,314,776,780,860,881,27903,27904</link.rule.ids></links><search><creatorcontrib>Luo, Junmei</creatorcontrib><creatorcontrib>Deng, Shuchao</creatorcontrib><title>Evaluation Model of the Mental Health Education Effectiveness Based on Deep Neural Networks</title><title>Journal of computing and information technology</title><description>This research develops a deep neural network model called DNN-MHE to evaluate mental health education effects. A questionnaire survey collected data on 916 students' mental health knowledge, attitudes, and behaviors. DNN-MHE uses five fully connected layers to predict mental health metrics. Experiments demonstrate that DNN-MHE achieves 99.46% accuracy, outperforming RNN, CNN, and shallow MLP models. Ablation studies validate the impact of training iterations, number of neurons, and number of data samples on performance. Overall, DNN-MHE enables accurate and efficient analysis of mental health education with practical implications for improving university programs.</description><subject>Analysis</subject><subject>Data mining</subject><subject>deep neural network, mental health education, neuron numbers</subject><subject>Health aspects</subject><subject>Health education</subject><subject>Health surveys</subject><subject>Machine learning</subject><subject>Medical personnel</subject><subject>Mental health</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Study and teaching</subject><subject>Surveys</subject><subject>Training</subject><issn>1330-1136</issn><issn>1846-3908</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNptkUtLxDAUhYsoKDo_wF3AlYuOebRJu_QxPsBR8LFyEe6kN06000qSGfXfG60IA94s7uHwnUvgZNk-o2NOS8GPjItJcTFmlJaKq41sh1WFzEVNq82khaA5Y0JuZ6MQXmgaUUtZsJ3sabKCdgnR9R2Z9g22pLckzpFMsYvQkkuENs7JpFmaAZpYiya6FXYYAjmBgA1J9hniG7nBpU-ZG4zvvX8Ne9mWhTbg6HfvZo_nk4fTy_z69uLq9Pg6N7xkMS9qi5WZNVVNqW1oPYNKgZGlpULSmeCs5FQImHEpOChpmcWmKAyoukSEyordLB_uzr2BV_3m3QL8p-7B6cEJ3mCSWjDBqUr8wcA_Q4vadbaPHszCBaOPVUVrXislEzX-h0qvwYUzfYfWJX8tcLgWSEzEj_gMyxD01f3dOssG1vg-BI_279eM6p9OdepUf3eqfzsVX53Bkyk</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Luo, Junmei</creator><creator>Deng, Shuchao</creator><general>Sveuciliste U Zagrebu</general><general>Fakultet elektrotehnike i računarstva Sveučilišta u Zagrebu</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>VP8</scope></search><sort><creationdate>20230301</creationdate><title>Evaluation Model of the Mental Health Education Effectiveness Based on Deep Neural Networks</title><author>Luo, Junmei ; Deng, Shuchao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c251t-49fe8cbd8900fd09ba87ac65f0360b32152033ab2632a76f1fed44ca795eea8f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Data mining</topic><topic>deep neural network, mental health education, neuron numbers</topic><topic>Health aspects</topic><topic>Health education</topic><topic>Health surveys</topic><topic>Machine learning</topic><topic>Medical personnel</topic><topic>Mental health</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Study and teaching</topic><topic>Surveys</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Junmei</creatorcontrib><creatorcontrib>Deng, Shuchao</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Hrcak: Portal of scientific journals of Croatia</collection><jtitle>Journal of computing and information technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Junmei</au><au>Deng, Shuchao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation Model of the Mental Health Education Effectiveness Based on Deep Neural Networks</atitle><jtitle>Journal of computing and information technology</jtitle><date>2023-03-01</date><risdate>2023</risdate><volume>31</volume><issue>1</issue><spage>57</spage><epage>72</epage><pages>57-72</pages><issn>1330-1136</issn><eissn>1846-3908</eissn><coden>CJCTEM</coden><abstract>This research develops a deep neural network model called DNN-MHE to evaluate mental health education effects. A questionnaire survey collected data on 916 students' mental health knowledge, attitudes, and behaviors. DNN-MHE uses five fully connected layers to predict mental health metrics. Experiments demonstrate that DNN-MHE achieves 99.46% accuracy, outperforming RNN, CNN, and shallow MLP models. Ablation studies validate the impact of training iterations, number of neurons, and number of data samples on performance. Overall, DNN-MHE enables accurate and efficient analysis of mental health education with practical implications for improving university programs.</abstract><pub>Sveuciliste U Zagrebu</pub><doi>10.20532/cit.2023.1005727</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1330-1136
ispartof Journal of computing and information technology, 2023-03, Vol.31 (1), p.57-72
issn 1330-1136
1846-3908
language eng
recordid cdi_hrcak_primary_oai_hrcak_srce_hr_313207
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Analysis
Data mining
deep neural network, mental health education, neuron numbers
Health aspects
Health education
Health surveys
Machine learning
Medical personnel
Mental health
Neural networks
Neurons
Study and teaching
Surveys
Training
title Evaluation Model of the Mental Health Education Effectiveness Based on Deep Neural Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T15%3A08%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_hrcak&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20Model%20of%20the%20Mental%20Health%20Education%20Effectiveness%20Based%20on%20Deep%20Neural%20Networks&rft.jtitle=Journal%20of%20computing%20and%20information%20technology&rft.au=Luo,%20Junmei&rft.date=2023-03-01&rft.volume=31&rft.issue=1&rft.spage=57&rft.epage=72&rft.pages=57-72&rft.issn=1330-1136&rft.eissn=1846-3908&rft.coden=CJCTEM&rft_id=info:doi/10.20532/cit.2023.1005727&rft_dat=%3Cgale_hrcak%3EA780929776%3C/gale_hrcak%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A780929776&rfr_iscdi=true