Evaluation Model of the Mental Health Education Effectiveness Based on Deep Neural Networks
This research develops a deep neural network model called DNN-MHE to evaluate mental health education effects. A questionnaire survey collected data on 916 students' mental health knowledge, attitudes, and behaviors. DNN-MHE uses five fully connected layers to predict mental health metrics. Exp...
Gespeichert in:
Veröffentlicht in: | Journal of computing and information technology 2023-03, Vol.31 (1), p.57-72 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This research develops a deep neural network model called DNN-MHE to evaluate mental health education effects. A questionnaire survey collected data on 916 students' mental health knowledge, attitudes, and behaviors. DNN-MHE uses five fully connected layers to predict mental health metrics. Experiments demonstrate that DNN-MHE achieves 99.46% accuracy, outperforming RNN, CNN, and shallow MLP models. Ablation studies validate the impact of training iterations, number of neurons, and number of data samples on performance. Overall, DNN-MHE enables accurate and efficient analysis of mental health education with practical implications for improving university programs. |
---|---|
ISSN: | 1330-1136 1846-3908 |
DOI: | 10.20532/cit.2023.1005727 |