Evaluation Model of the Mental Health Education Effectiveness Based on Deep Neural Networks

This research develops a deep neural network model called DNN-MHE to evaluate mental health education effects. A questionnaire survey collected data on 916 students' mental health knowledge, attitudes, and behaviors. DNN-MHE uses five fully connected layers to predict mental health metrics. Exp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computing and information technology 2023-03, Vol.31 (1), p.57-72
Hauptverfasser: Luo, Junmei, Deng, Shuchao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This research develops a deep neural network model called DNN-MHE to evaluate mental health education effects. A questionnaire survey collected data on 916 students' mental health knowledge, attitudes, and behaviors. DNN-MHE uses five fully connected layers to predict mental health metrics. Experiments demonstrate that DNN-MHE achieves 99.46% accuracy, outperforming RNN, CNN, and shallow MLP models. Ablation studies validate the impact of training iterations, number of neurons, and number of data samples on performance. Overall, DNN-MHE enables accurate and efficient analysis of mental health education with practical implications for improving university programs.
ISSN:1330-1136
1846-3908
DOI:10.20532/cit.2023.1005727