A result related to derivations on unital semiprime rings

The purpose of this paper is to prove the following result. Let n≥3 be some fixed integer and let R be a (n+1)!2n-2-torsion free semiprime unital ring. Suppose there exists an additive mapping D: R→ R satisfying the relation for all x ∈ R. In this case D is a derivation. The history of this result g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Glasnik matematički 2021-06, Vol.56 (1), p.95-106
Hauptverfasser: Kosi-Ulbl, Irena, Širovnik, Nejc, Vukman, Joso
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The purpose of this paper is to prove the following result. Let n≥3 be some fixed integer and let R be a (n+1)!2n-2-torsion free semiprime unital ring. Suppose there exists an additive mapping D: R→ R satisfying the relation for all x ∈ R. In this case D is a derivation. The history of this result goes back to a classical result of Herstein, which states that any Jordan derivation on a 2-torsion free prime ring is a derivation.
ISSN:0017-095X
1846-7989
DOI:10.3336/gm.56.1.07