Uniqueness of hyperspaces of indecomposable arc continua
Given a metric continuum X, we consider the hyperspace Cn(X) of all nonempty closed subsets of X with at most n components. In this paper we prove that if n≠ 2, X is an indecomposable continuum such that all its proper nondegenerate subcontinua are arcs and Y is a continuum such that Cn(X) is homeom...
Gespeichert in:
Veröffentlicht in: | Glasnik matematički 2014-12, Vol.49 (2), p.421-432 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Given a metric continuum X, we consider the hyperspace Cn(X) of all nonempty closed subsets of X with at most n components. In this paper we prove that if n≠ 2, X is an indecomposable continuum such that all its proper nondegenerate subcontinua are arcs and Y is a continuum such that Cn(X) is homeomorphic to Cn(Y), then X is homeomorphic to Y (that is, X has unique hyperspace Cn(X)). |
---|---|
ISSN: | 0017-095X 1846-7989 |
DOI: | 10.3336/gm.49.2.14 |