A Vision-Based Video Crash Detection Framework for Mixed Traffic Flow Environment Considering Low-Visibility Condition

In this paper, a vision-based crash detection framework was proposed to quickly detect various crash types in mixed traffic flow environment, considering low-visibility conditions. First, Retinex image enhancement algorithm was introduced to improve the quality of images, collected under low-visibil...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of advanced transportation 2020, Vol.2020 (2020), p.1-11
Hauptverfasser: Geng, Yifei, Zhou, Wei, Dai, Yulu, Wang, Chen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, a vision-based crash detection framework was proposed to quickly detect various crash types in mixed traffic flow environment, considering low-visibility conditions. First, Retinex image enhancement algorithm was introduced to improve the quality of images, collected under low-visibility conditions (e.g., heavy rainy days, foggy days and dark night with poor lights). Then, a Yolo v3 model was trained to detect multiple objects from images, including fallen pedestrians/cyclists, vehicle rollover, moving/stopped vehicles, moving/stopped cyclists/pedestrians, and so on. Then, a set of features were developed from the Yolo outputs, based on which a decision model was trained for crash detection. An experiment was conducted to validate the model framework. The results showed that the proposed framework achieved a high detection rate of 92.5%, with relatively low false alarm rate of 7.5%. There are some useful findings: (1) the proposed model outperformed empirical rule-based detection models; (2) image enhancement method can largely improve crash detection performance under low-visibility conditions; (3) the accuracy of object detection (e.g., bounding box prediction) can impact crash detection performance, especially for minor motor-vehicle crashes. Overall, the proposed framework can be considered as a promising tool for quick crash detection in mixed traffic flow environment under various visibility conditions. Some limitations are also discussed in the paper.
ISSN:0197-6729
2042-3195
DOI:10.1155/2020/9194028