Effect of East Gyro Drift and Initial Azimuth Error on the Compass Azimuth Alignment Convergence Time
The effect of gyro constant drift and initial azimuth error on the convergence time of compass azimuth is analyzed in this article. Using our designed compass azimuth alignment system, we obtain the responses of gyro constant drift and initial azimuth error in the frequency domain. The corresponding...
Gespeichert in:
Veröffentlicht in: | Mathematical problems in engineering 2020, Vol.2020 (2020), p.1-10, Article 9042197 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The effect of gyro constant drift and initial azimuth error on the convergence time of compass azimuth is analyzed in this article. Using our designed compass azimuth alignment system, we obtain the responses of gyro constant drift and initial azimuth error in the frequency domain. The corresponding response function in the time domain is derived using the inverse Laplace transform, and its convergence time is then analyzed. The analysis results demonstrate that the convergence time of compass azimuth alignment is related to the second-order damping oscillation period, the gyro constant drift, and the initial azimuth error. In this study, the error band is set to 0.01° to determine convergence. When the gyro drift is less than 0.05°/h, compass azimuth alignment can converge within 0.9 damping oscillation periods. When the initial azimuth error is less than 5°, compass azimuth alignment can converge within 1.4 damping oscillation periods. When both conditions are met, the initial error plays a major role in convergence, while gyro drift has a smaller effect on convergence time. Finally, the validity of our method is verified using simulations. |
---|---|
ISSN: | 1024-123X 1563-5147 |
DOI: | 10.1155/2020/9042197 |