The Splitting Crank–Nicolson Scheme with Intrinsic Parallelism for Solving Parabolic Equations

In this paper, a splitting Crank–Nicolson (SC-N) scheme with intrinsic parallelism is proposed for parabolic equations. The new algorithm splits the Crank–Nicolson scheme into two domain decomposition methods, each one is applied to compute the values at (n + 1)th time level by use of known numerica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of function spaces 2020, Vol.2020 (2020), p.1-12, Article 8571625
Hauptverfasser: Xue, Guanyu, Feng, Hui, Gong, Yunjie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, a splitting Crank–Nicolson (SC-N) scheme with intrinsic parallelism is proposed for parabolic equations. The new algorithm splits the Crank–Nicolson scheme into two domain decomposition methods, each one is applied to compute the values at (n + 1)th time level by use of known numerical solutions at n-th time level, respectively. Then, the average of the above two values is chosen to be the numerical solutions at (n + 1)th time level. The new algorithm obtains accuracy of the Crank–Nicolson scheme while maintaining parallelism and unconditional stability. This algorithm can be extended to solve two-dimensional parabolic equations by alternating direction implicit (ADI) technique. Numerical experiments illustrate the accuracy and efficiency of the new algorithm.
ISSN:2314-8896
2314-8888
DOI:10.1155/2020/8571625