Stock Forecasting Model FS-LSTM Based on the 5G Internet of Things

This paper analyzed the development of data mining and the development of the fifth generation (5G) for the Internet of Things (IoT) and uses a deep learning method for stock forecasting. In order to solve the problems such as low accuracy and training complexity caused by complicated data in stock...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2020, Vol.2020 (2020), p.1-7, Article 7681209
Hauptverfasser: Li, Geng, Li, Jinqiu, Hua, Jinjin, Li, Hui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper analyzed the development of data mining and the development of the fifth generation (5G) for the Internet of Things (IoT) and uses a deep learning method for stock forecasting. In order to solve the problems such as low accuracy and training complexity caused by complicated data in stock model forecasting, we proposed a forecasting method based on the feature selection (FS) and Long Short-Term Memory (LSTM) algorithm to predict the closing price of stock. Considering its future potential application, this paper takes 4 stock data from the Shenzhen Component Index as an example and constructs the feature set for prediction based on 17 technical indexes which are commonly used in stock market. The optimal feature set is decided via FS to reduce the dimension of data and the training complexity. The LSTM algorithm is used to forecast closing price of stock. The empirical results show that compared with the LSTM model, the FS-LSTM combination model improves the accuracy of prediction and reduces the error between the real value and the forecast value in stock price prediction.
ISSN:1530-8669
1024-123X
1530-8677
1563-5147
DOI:10.1155/2020/7681209