On Local Generalized Ulam–Hyers Stability for Nonlinear Fractional Functional Differential Equation

We discuss the existence of positive solution for a class of nonlinear fractional differential equations with delay involving Caputo derivative. Well-known Leray–Schauder theorem, Arzela–Ascoli theorem, and Banach contraction principle are used for the fixed point property and existence of a solutio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2020, Vol.2020 (2020), p.1-12, Article 3276873
Hauptverfasser: Nie, Dongming, Ahmed, Bilal, Khan Niazi, Azmat Ullah
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We discuss the existence of positive solution for a class of nonlinear fractional differential equations with delay involving Caputo derivative. Well-known Leray–Schauder theorem, Arzela–Ascoli theorem, and Banach contraction principle are used for the fixed point property and existence of a solution. We establish local generalized Ulam–Hyers stability and local generalized Ulam–Hyers–Rassias stability for the same class of nonlinear fractional neutral differential equations. The simulation of an example is also given to show the applicability of our results.
ISSN:1024-123X
1563-5147
DOI:10.1155/2020/3276873