Cherry-picking for complex data: robust structure discovery

Complex data often arise as a superposition of data generated from several simpler models. The traditional strategy for such cases is to use mixture modelling, but it can be problematic, especially in higher dimensions. This paper considers an alternative approach, emphasizing data exploration and r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences physical, and engineering sciences, 2009-11, Vol.367 (1906), p.4339-4359
Hauptverfasser: Banks, David L., House, Leanna, Killourhy, Kevin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Complex data often arise as a superposition of data generated from several simpler models. The traditional strategy for such cases is to use mixture modelling, but it can be problematic, especially in higher dimensions. This paper considers an alternative approach, emphasizing data exploration and robustness to model misspecification. The strategy is applied to problems in regression, cluster analysis and multidimensional scaling. The approach is illustrated through simulation and the analysis of several datasets.
ISSN:1364-503X
1471-2962
DOI:10.1098/rsta.2009.0119