Survey of Tetrahedral Structures
Structures built from tetrahedral AX$_{4}$ groups that share some or all of their X atoms may be classified according to the numbers of tetrahedra to which the X atoms belong. If v$_{x}$ is the number of X atoms of each AX$_{4}$ group in a structure of composition A$_{m}$ X$_{n}$ which are common to...
Gespeichert in:
Veröffentlicht in: | Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences physical, and engineering sciences, 1986-08, Vol.319 (1548), p.291 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Structures built from tetrahedral AX$_{4}$ groups that share some or all of their X atoms may be classified according to the
numbers of tetrahedra to which the X atoms belong. If v$_{x}$ is the number of X atoms of each AX$_{4}$ group in a structure
of composition A$_{m}$ X$_{n}$ which are common to x such groups (that is, x is the coordination number of X) then $\Sigma
$v$_{x}$ = 4 and $\Sigma $(v$_{x}$/x) = n/m. The solutions of these equations for any composition A$_{m}$ X$_{n}$ may be examined
systematically. The present survey is restricted to structures which can be constructed from regular tetrahedral AX$_{4}$
groups, all of which share their X atoms in the same way and have no X-X separations shorter than the edge of a tetrahedron.
A study is made of the types of possible structure, finite, one-, two- or three-dimensional, and the emphasis is on the topology
rather than the geometry of the structures. |
---|---|
ISSN: | 1364-503X 1471-2962 |
DOI: | 10.1098/rsta.1986.0100 |