Symmetry Operators for Maxwell's Equations on Curved Space-Time

We derive necessary and sufficient conditions that a second-order co-variant differential operator be a symmetry operator of Maxwell’s equations in a general curved space-time background. It is found that such operators are naturally formulated in terms of conformal Killing vectors, tensors and spin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Royal Society. A, Mathematical and physical sciences Mathematical and physical sciences, 1992-10, Vol.439 (1905), p.103-113
Hauptverfasser: Kalnins, E. G., McLenaghan, R. G., Williams, G. C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We derive necessary and sufficient conditions that a second-order co-variant differential operator be a symmetry operator of Maxwell’s equations in a general curved space-time background. It is found that such operators are naturally formulated in terms of conformal Killing vectors, tensors and spinors. Operators of this type play a role in the solution of Maxwell’s equations via separation of variables in the Kerr background space-time.
ISSN:1364-5021
0962-8444
1471-2946
2053-9177
DOI:10.1098/rspa.1992.0136