Symmetry Operators for Maxwell's Equations on Curved Space-Time
We derive necessary and sufficient conditions that a second-order co-variant differential operator be a symmetry operator of Maxwell’s equations in a general curved space-time background. It is found that such operators are naturally formulated in terms of conformal Killing vectors, tensors and spin...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Royal Society. A, Mathematical and physical sciences Mathematical and physical sciences, 1992-10, Vol.439 (1905), p.103-113 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We derive necessary and sufficient conditions that a second-order co-variant differential operator be a symmetry operator of Maxwell’s equations in a general curved space-time background. It is found that such operators are naturally formulated in terms of conformal Killing vectors, tensors and spinors. Operators of this type play a role in the solution of Maxwell’s equations via separation of variables in the Kerr background space-time. |
---|---|
ISSN: | 1364-5021 0962-8444 1471-2946 2053-9177 |
DOI: | 10.1098/rspa.1992.0136 |