Visual motion processing in the anterior ectosylvian sulcus of the cat

J. W. Scannell, F. Sengpiel, M. J. Tovee, P. J. Benson, C. Blakemore and M. P. Young University Laboratory of Physiology, Oxford, United Kingdom. 1. Neurons that are selectively sensitive to the direction of motion of elongated contours have been found in several cortical areas in many species. Howe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neurophysiology 1996-08, Vol.76 (2), p.895-907
Hauptverfasser: Scannell, J. W, Sengpiel, F, Tovee, M. J, Benson, P. J, Blakemore, C, Young, M. P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:J. W. Scannell, F. Sengpiel, M. J. Tovee, P. J. Benson, C. Blakemore and M. P. Young University Laboratory of Physiology, Oxford, United Kingdom. 1. Neurons that are selectively sensitive to the direction of motion of elongated contours have been found in several cortical areas in many species. However, in the striate cortex of the cat and monkey, and the extrastriate posteromedial lateral suprasylvian visual area of the cat, such cells are generally component motion selective, signaling only the direction of movement orthogonal to the preferred orientation; a direction that is not necessarily the same as the motion of the entire pattern or texture of which the cell's preferred contour is part. The primate extrastriate middle temporal area is the only cortical region currently known to contain a substantial population of pattern-motion-selective cells that respond to the shared vector of motion of mixtures of contours. 2. From analyzing published data on the connectivity of the cat's cortex, we predicted that the anterior ectosylvian visual area (AEV), situated within the anterior ectosylvian sulcus, might be a higher-order motion processing area and thus likely to contain pattern-motion-selective neurons. This paper presents the results of a study on neuronal responses in AEV. 3. Ninety percent of AEV cells that responded strongly to drifting grating and/or plaid stimuli were directionally selective (directionality index > 0.5). For this group, the mean directionality index was 0.75. Moreover, 55% of these cells were unequivocally classified as pattern motion selective and only one neuron was classified as definitely component motion selective. Thus high-level pattern motion coding occurs in the cat extrastriate cortex and is not limited to the primate middle temporal area. 4. AEV contains a heterogeneous population of directionally selective cells. There was no clear relation between the degree of directional selectivity for plaids or gratings and the degree of selectivity for pattern motion or component motion. Nevertheless, 28% of the highly responsive cells were both more strongly modulated by plaids than gratings and more pattern motion selective than component motion selective. Such cells could correspond to a population of "selection units" signaling the salience of local motion information. 5. AEV lacks global retinotopic order but the preferred direction of motion of neurons (rather than axis of motion, as in the middle temporal area and the post
ISSN:0022-3077
1522-1598
DOI:10.1152/jn.1996.76.2.895