Effects of ANG II, ETA, and TxA2 receptor antagonists on cyclosporin A renal vasoconstriction

J. D. Conger, G. E. Kim and J. B. Robinette Department of Medicine, University of Colorado Health Sciences Center, Denver. The renin-angiotensin system, endothelin (ET), and vasoconstrictor prostaglandins have been reported in separate studies to mediate the renal vasoconstrictor effect of cyclospor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of physiology. Renal, fluid and electrolyte physiology fluid and electrolyte physiology, 1994-09, Vol.267 (3), p.443-F449
Hauptverfasser: Conger, J. D, Kim, G. E, Robinette, J. B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:J. D. Conger, G. E. Kim and J. B. Robinette Department of Medicine, University of Colorado Health Sciences Center, Denver. The renin-angiotensin system, endothelin (ET), and vasoconstrictor prostaglandins have been reported in separate studies to mediate the renal vasoconstrictor effect of cyclosporin A (CsA). However, direct comparison of the relative importance of these potential mediators has not been performed. In this study, the attenuating effects of comparable agonist-inhibiting doses of receptor antagonists for angiotensin II (ANG II), DuP-753 at 2.5 mg/kg, for ETA, BQ-123 at 0.5 mg/kg, and for thromboxane A2 (TxA2), SQ-29,548 at 1.6 mg.kg-1.h-1, or saline vehicle on acute CsA (20 mg/kg) renal vasoconstriction were compared in anesthetized Sprague-Dawley rats. All three receptor antagonists significantly limited the CsA-induced increase in renal vascular resistance; however, BQ-123 and SQ-29,548 were more effective than DuP-753. Because all three receptor antagonists demonstrated at least some attenuation of CsA-induced renal vasoconstriction, the potential role of acute CsA-related nitric oxide synthase (NOS) inhibition and nonspecific heterologous effects of specific receptor antagonists on other agonists were determined to exclude the possibilities that there was a general increased agonist sensitivity and that detection of a single or primary constrictor mediator was obscured by "crossover" receptor antagonist effects. CsA significantly reduced renal blood flow (39%) in the presence of the NOS inhibitor, N omega-nitro-L-arginine methyl ester, and there was negligible indication that receptor antagonists had nonspecific effects. It is concluded that CsA-induced renal vasoconstriction is complex and involves activation of multiple constrictor agonists independently or sequentially.
ISSN:0363-6127
0002-9513
2161-1157