Disparate effects of Ca channel blockade on afferent and efferent arteriolar responses to ANG II

P. K. Carmines and L. G. Navar Department of Physiology and Biophysics, University of Alabama, Birmingham 35294. Previous reports have suggested that organic calcium antagonists only partially inhibit the renal hemodynamic actions of angiotensin II (ANG II). This study tested the hypothesis that the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of physiology. Renal physiology 1989-06, Vol.256 (6), p.1015-F1020
Hauptverfasser: Carmines, P. K, Navar, L. G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:P. K. Carmines and L. G. Navar Department of Physiology and Biophysics, University of Alabama, Birmingham 35294. Previous reports have suggested that organic calcium antagonists only partially inhibit the renal hemodynamic actions of angiotensin II (ANG II). This study tested the hypothesis that the calcium antagonist-sensitive component of ANG II-induced vasoconstriction is localized at a preglomerular site. Videomicroscopic measurements of vascular dimension were performed on in vitro blood-perfused juxtamedullary nephrons from captopril-treated rats. Under control conditions, afferent and efferent arteriolar diameters averaged 23.0 +/- 1.6 and 21.2 +/- 2.2 microns, respectively. Topical application of 0.1 nM ANG II decreased the diameters of afferent (-17 +/- 2%) and efferent (-15 +/- 3%) arterioles. Both 50 microM verapamil and 10 microM diltiazem dilated afferent arterioles. Verapamil also elicited a modest efferent vasodilation. In the presence of either verapamil or diltiazem, the effect of ANG II to decrease efferent diameter was sustained (-15 +/- 4%); however, the effect of ANG II on afferent diameter was abolished (-1 +/- 1%). These observations document differential influences of calcium channel blockers on ANG II-mediated vasoconstriction and suggest that the pre- and postglomerular vasoconstrictor actions of ANG II may occur through different calcium entry or mobilization mechanisms.
ISSN:0363-6127
0002-9513
1931-857X
2161-1157
1522-1466
DOI:10.1152/ajprenal.1989.256.6.f1015