Operational modes of the organic anion exchanger in canine renal brush-border membrane vesicles

T. G. Steffens, P. D. Holohan and C. R. Ross Department of Pharmacology, State University of New York Health Science Center, Syracuse 13210. This study delineates the various operational modes catalyzed by the organic anion exchanger present in the canine renal brush-border membrane. The experiments...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of physiology. Renal physiology 1989-04, Vol.256 (4), p.596-F609
Hauptverfasser: Steffens, T. G, Holohan, P. D, Ross, C. R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:T. G. Steffens, P. D. Holohan and C. R. Ross Department of Pharmacology, State University of New York Health Science Center, Syracuse 13210. This study delineates the various operational modes catalyzed by the organic anion exchanger present in the canine renal brush-border membrane. The experiments examined the carrier-mediated effects of various organic and inorganic anions on the transport of either p-[3H]aminohippuric acid ([3H]PAH) or 36Cl-. [3H]PAH countertransport was significantly stimulated by PAH, urate, Cl-, Br-, HCO3-, and by a pH gradient. This pH stimulation remained in the absence of HCO3- (i.e., under N2), implying PAH-OH- exchange. Furosemide, bumetanide, penicillin, and probenecid inhibited countertransport of [3H]PAH. Likewise, the above anions produced cis inhibition of [3H]PAH transport. The cis and trans effects of SO4(-2) and formate were minimal. 36Cl- countertransport was stimulated by PAH, Cl-, Br-, HCO3-, formate, and by a pH gradient that was effective even in the absence of HCO3- (i.e., under N2), implying Cl- -OH- exchange. Cl- -OH- and Cl- -Cl- exchange was inhibited by PAH. In each instance, the trans-stimulation of 36Cl- efflux was insensitive to maneuvers that created an inside-positive membrane potential, demonstrating electroneutral mediated exchange. We conclude that the organic anion transporter can operate in three distinct exchange modes: organic-organic, organic-inorganic, and inorganic-inorganic.
ISSN:0363-6127
0002-9513
1931-857X
2161-1157
1522-1466
DOI:10.1152/ajprenal.1989.256.4.F596