cAMP and protein kinase A modulate cholinergic rapid eye movement sleep generation

M. L. Capece and R. Lydic Department of Anesthesia, The Pennsylvania State University, College of Medicine, Hershey 17033, USA. Cholinergic neurotransmission in the medial pontine reticular formation (mPRF) modulates rapid eye movement (REM) sleep generation. Microinjection of cholinergic agonists a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of physiology. Regulatory, integrative and comparative physiology integrative and comparative physiology, 1997-10, Vol.273 (4), p.1430-R1440
Hauptverfasser: Capece, M. L, Lydic, R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:M. L. Capece and R. Lydic Department of Anesthesia, The Pennsylvania State University, College of Medicine, Hershey 17033, USA. Cholinergic neurotransmission in the medial pontine reticular formation (mPRF) modulates rapid eye movement (REM) sleep generation. Microinjection of cholinergic agonists and acetylcholinesterase inhibitors into the mPRF induces a REM sleep-like state, and microdialysis data reveal increased mPRF levels of acetylcholine during REM sleep. Muscarinic cholinergic receptors (mAChRs) participate in REM sleep generation, and data suggest that mAChRs of a non-M1 subtype modulate REM sleep generation. The signal transduction pathway activated by m2 and m4 mAChRs involves a pertussis toxin-sensitive G protein, adenylate cyclase (AC), adenosine 3',5'-cyclic monophosphate (cAMP), and protein kinase A (PKA). Therefore, the present study tested the hypothesis that cAMP and PKA within the mPRF modulate the carbachol-induced REM sleep-like state. To test this hypothesis, the mPRF was microinjected with compounds known to facilitate the effects of cAMP (dibutyryl cAMP and 8-bromo-cAMP), stimulate PKA (Sp-cAMP[S]), and inhibit PKA (Rp-cAMP[S]). The results showed that compounds that fostered the intracellular effects of cAMP significantly decreased cholinergic REM sleep, while having no effect on spontaneously occurring REM sleep. These data are consistent with the recent finding that within the mPRF, AC and a pertussis toxin-sensitive G protein modulate cholinergic REM sleep generation. These new data suggest a modulatory role for pontine cAMP and PKA in cholinergic REM sleep regulation.
ISSN:0363-6119
0002-9513
1522-1490
2163-5773
DOI:10.1152/ajpregu.1997.273.4.r1430