Mechanism of reduced water intake in rats at high altitude

R. M. Jones, C. Terhaard, J. Zullo and S. M. Tenney Water intake was reduced during the 1st day of hypobaric hypoxia (inspired O2 pressure of 75 Torr) to 35-40% of the normoxic level in both normal rats (N) and rats with diabetes insipidus (DI). Analysis of water intake under graded saline loads at...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of physiology. Regulatory, integrative and comparative physiology integrative and comparative physiology, 1981-03, Vol.240 (3), p.R187-R191
Hauptverfasser: Jones, R.M, Terhaard, C, Zullo, J, Tenney, S.M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:R. M. Jones, C. Terhaard, J. Zullo and S. M. Tenney Water intake was reduced during the 1st day of hypobaric hypoxia (inspired O2 pressure of 75 Torr) to 35-40% of the normoxic level in both normal rats (N) and rats with diabetes insipidus (DI). Analysis of water intake under graded saline loads at several inspired O2 levels (inspired O2 fractional concentrations of 0.105, 0.120, and 0.2095) indicated that hypoxia increased the threshold for osmotic stimulation of drinking without changing the sensitivity of the response in both N and DI rats. Nephrectomized N rats reduced water intake during hypoxia to 33% of the nephrectomized normoxic level of intake, and nephrectomized DI rats reduced intake to 47% of the nephrectomized normoxic intake. From these results it is concluded that reduced angiotensin II formation was not the factor responsible for reduced water intake during hypoxia. Polyethylene glycol-induced hypovolemia resulted in increased water intake during normoxia, but during hypoxia it was reduced to 29% of the normoxic rate. Reduced body temperature and hyperventilation were not the source of hypoxic attenuation of thirst. The mechanism may reside beyond the central integration of osmotic and nonosmotic information, or at the osmotic sensing mechanism itself.
ISSN:0002-9513
0363-6119
2163-5773
1522-1490
DOI:10.1152/ajpregu.1981.240.3.r187