Angiotensin II enhancement of hormone-stimulated cAMP formation in cultured vascular smooth muscle cells

S. W. Kubalak and J. G. Webb Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston 29425. The mechanism by which angiotensin II (ANG II) potentiates hormone-induced adenosine 3',5'-cyclic monophosphate (cAMP) formation was studied in cultured rat v...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of physiology. Heart and circulatory physiology 1993-01, Vol.264 (1), p.H86-H96
Hauptverfasser: Kubalak, S. W, Webb, J. G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:S. W. Kubalak and J. G. Webb Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston 29425. The mechanism by which angiotensin II (ANG II) potentiates hormone-induced adenosine 3',5'-cyclic monophosphate (cAMP) formation was studied in cultured rat vascular smooth muscle cells. Incubation of cells for 60 s with 100 nM ANG II produced a two- to threefold enhancement of cAMP stimulation when coupled with isoproterenol, prostaglandin I2, or adenosine. ANG II also enhanced cAMP formation when adenylyl cyclase was stimulated directly with forskolin or activated through the stimulatory guanyl nucleotide-binding protein (Gs) with cholera toxin. Forskolin stimulation was increased by only 40%, but cholera toxin-stimulated cAMP formation was doubled. Activation of protein kinase C with phorbol 12-myristate 13-acetate (PMA) enhanced isoproterenol-stimulated cAMP by 51%, but inhibitors of protein kinase activation had little effect on ANG II enhancement of cAMP production. However, use of PMA to cause feedback inhibition of D-myo-inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] formation blocked the effect of ANG II on agonist-stimulated cAMP formation, and the time course for this effect of PMA paralleled its inhibitory effect on Ins(1,4,5)P3 production. Furthermore, chelation of intracellular Ca2+ or treatment with calmodulin antagonists also diminished the synergism between ANG II and isoproterenol for cAMP stimulation. The results indicate that ANG II enhances cAMP formation in vascular smooth muscle cells by facilitating the interaction between activated Gs and adenylyl cyclase. In addition, the data suggest that this effect of ANG II is directly related to Ins(1,4,5)P3 stimulation and appears to involve a Ca(2+)-calmodulin-dependent mechanism.
ISSN:0363-6135
0002-9513
1522-1539
DOI:10.1152/ajpheart.1993.264.1.h86