Microtubule Binding and Disruption and Induction of Premature Senescence by Disorazole C1
Disorazoles comprise a family of 29 macrocyclic polyketides isolated from the fermentation broth of the myxobacterium Sorangium cellulosum . The major fermentation product, disorazole A 1 , was found previously to irreversibly bind to tubulin and to have potent cytotoxic activity against tumor cells...
Gespeichert in:
Veröffentlicht in: | The Journal of pharmacology and experimental therapeutics 2009-03, Vol.328 (3), p.715 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Disorazoles comprise a family of 29 macrocyclic polyketides isolated from the fermentation broth of the myxobacterium Sorangium cellulosum . The major fermentation product, disorazole A 1 , was found previously to irreversibly bind to tubulin and to have potent cytotoxic activity against tumor cells, possibly
because of its highly electrophilic epoxide moiety. To test this hypothesis, we synthesized the epoxide-free disorazole C 1 and found it retained potent antiproliferative activity against tumor cells, causing prominent G 2 /M phase arrest and inhibition of in vitro tubulin polymerization. Furthermore, disorazole C 1 produced disorganized microtubules at interphase, misaligned chromosomes during mitosis, apoptosis, and premature senescence
in the surviving cell populations. Using a tubulin polymerization assay, we found disorazole C 1 inhibited purified bovine tubulin polymerization, with an IC 50 of 11.8 ± 0.4 μM, and inhibited [ 3 H]vinblastine binding noncompetitively, with a K i of 4.5 ± 0.6 μM. We also found noncompetitive inhibition of [ 3 H]dolastatin 10 binding by disorazole C 1 , with a K i of 10.6 ± 1.5 μM, indicating that disorazole C 1 bound tubulin uniquely among known antimitotic agents. Disorazole C 1 could be a valuable chemical probe for studying the process of mitotic spindle disruption and its relationship to premature
senescence. |
---|---|
ISSN: | 0022-3565 1521-0103 |
DOI: | 10.1124/jpet.108.147330 |