Regenerative Simulation for Estimating Extreme Values
Let X ( t ) denote the regenerative process being simulated and assume that it converges in distribution to a steady state random variable. This paper considers estimating the extreme values of the regenerative process. Suppose we are interested in the largest value attained in the interval [0, t ],...
Gespeichert in:
Veröffentlicht in: | Operations research 1983-11, Vol.31 (6), p.1145-1166 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let X ( t ) denote the regenerative process being simulated and assume that it converges in distribution to a steady state random variable. This paper considers estimating the extreme values of the regenerative process. Suppose we are interested in the largest value attained in the interval [0, t ], call it X *( t ). The paper develops a method for estimating the distribution of X *( t ). When the regenerative process is either the GI / G /1 queue or a birth-death process, theoretical results are available for the distribution of X *( t ). Our development simulated the waiting time, queue length, and virtual waiting time for an M / M /1 queue, employed the method for estimating the distribution of X *( t ), and compared the simulation results with the theoretical results. |
---|---|
ISSN: | 0030-364X 1526-5463 |
DOI: | 10.1287/opre.31.6.1145 |