A Comparison of the Sherali-Adams, Lovasz-Schrijver, and Lasserre Relaxations for 0-1 Programming

Sherali and Adams (1990), Lovász and Schrijver (1991) and, recently, Lasserre (2001b) have constructed hierarchies of successive linear or semidefinite relaxations of a 0–1 polytope P R n converging to P in n steps. Lasserre's approach uses results about representations of positive polynomials...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics of operations research 2003-08, Vol.28 (3), p.470-496
1. Verfasser: Laurent, Monique
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Sherali and Adams (1990), Lovász and Schrijver (1991) and, recently, Lasserre (2001b) have constructed hierarchies of successive linear or semidefinite relaxations of a 0–1 polytope P R n converging to P in n steps. Lasserre's approach uses results about representations of positive polynomials as sums of squares and the dual theory of moments. We present the three methods in a common elementary framework and show that the Lasserre construction provides the tightest relaxations of P . As an application this gives a direct simple proof for the convergence of the Lasserre's hierarchy. We describe applications to the stable set polytope and to the cut polytope.
ISSN:0364-765X
1526-5471
DOI:10.1287/moor.28.3.470.16391