A Comparison of the Sherali-Adams, Lovasz-Schrijver, and Lasserre Relaxations for 0-1 Programming
Sherali and Adams (1990), Lovász and Schrijver (1991) and, recently, Lasserre (2001b) have constructed hierarchies of successive linear or semidefinite relaxations of a 01 polytope P R n converging to P in n steps. Lasserre's approach uses results about representations of positive polynomials...
Gespeichert in:
Veröffentlicht in: | Mathematics of operations research 2003-08, Vol.28 (3), p.470-496 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Sherali and Adams (1990), Lovász and Schrijver (1991) and, recently, Lasserre (2001b) have constructed hierarchies of successive linear or semidefinite relaxations of a 01 polytope P R n converging to P in n steps. Lasserre's approach uses results about representations of positive polynomials as sums of squares and the dual theory of moments. We present the three methods in a common elementary framework and show that the Lasserre construction provides the tightest relaxations of P . As an application this gives a direct simple proof for the convergence of the Lasserre's hierarchy. We describe applications to the stable set polytope and to the cut polytope. |
---|---|
ISSN: | 0364-765X 1526-5471 |
DOI: | 10.1287/moor.28.3.470.16391 |