The Zero Duality Gap Property and Lower Semicontinuity of the Perturbation Function

We examine the validity of the zero duality gap properties for two important dual schemes: a generalized augmented Lagrangian dual scheme and a nonlinear Lagrange-type dual scheme. The necessary and sufficient conditions for the zero duality gap property to hold are established in terms of the lower...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics of operations research 2002-11, Vol.27 (4), p.775-791
Hauptverfasser: Rubinov, A. M, Huang, X. X, Yang, X. Q
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We examine the validity of the zero duality gap properties for two important dual schemes: a generalized augmented Lagrangian dual scheme and a nonlinear Lagrange-type dual scheme. The necessary and sufficient conditions for the zero duality gap property to hold are established in terms of the lower semicontinuity of the perturbation functions.
ISSN:0364-765X
1526-5471
DOI:10.1287/moor.27.4.775.295