Cytochrome P-450(TYR) is a multifunctional heme-thiolate enzyme catalyzing the conversion of L-tyrosine to p-hydroxyphenylacetaldehyde oxime in the biosynthesis of the cyanogenic glucoside dhurrin in Sorghum bicolor (L.) Moench

Cytochrome P-450TYR, which catalyzes the N-hydroxylation of L-tyrosine in the biosynthesis of the cyanogenic glucoside dhurrin in Sorghum bicolor (L.) Moench has recently been isolated (Sibbesen, O., Koch, B., Halkier, B. A., and Mo11er, B. L. (1994) Proc. Natl. Acad. Sci. U. S. A. 92, 9740-9744 )....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 1995-02, Vol.270 (8), p.3506
Hauptverfasser: Sibbesen, O. (Royal Veterinary and Agricultural University, Copenhagen, Denmark.), Koch, B, Halkier, B.A, Moller, B.L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cytochrome P-450TYR, which catalyzes the N-hydroxylation of L-tyrosine in the biosynthesis of the cyanogenic glucoside dhurrin in Sorghum bicolor (L.) Moench has recently been isolated (Sibbesen, O., Koch, B., Halkier, B. A., and Mo11er, B. L. (1994) Proc. Natl. Acad. Sci. U. S. A. 92, 9740-9744 ). Reconstitution of the enzyme activity in lipid micelles containing cytochrome P-450TYR and NADPH-cytochrome P-450 oxidoreductase demonstrates that cytochrome P-450TYR catalyzes the conversion of L-tyrosine into p-hydroxyphenylacetaldehyde oxime. Earlier studies with microsomes have demonstrated that this conversion involves two N-hydroxylation reactions of which the first produces N-hydroxytyrosine. We propose that the product of the second N-hydroxylation reaction is N,N-dihydroxytyrosine. N,N-dihydroxytyrosine is dehydrated to 2-nitroso-3-(p-hydroxyphenyl) propionic acid which decarboxylates to p-hydroxyphenylacetaldehyde oxime. The dehydration and decarboxylation reactions may proceed non-enzymatically. The E/Z ratio of the p-hydroxyphenylacetaldehyde oxime produced by reconstituted cytochrome P-450TYR is 69:31. Lipid micelles made from L-alpha-dilauroyl phosphatidylcholine are more than twice as effective in reconstituting cytochrome P-450TYR activity as compared to other lipids. The Km and turnover number of the enzyme is 0.14 mM and 200 min-1, respectively, when assayed in the presence of 15 mM NaCl whereas the values are 0.21 mM and 230 min-1 when assayed in the absence of added salt. The multifunctional nature cytochrome P-450TYR is confirmed by demonstrating that binding of L-tyrosine or N-hydroxytyrosine mutually excludes binding of the other substrate. These results explain why the conversion of tyrosine to p-hydroxyphenylacetaldehyde oxime as earlier reported (Moller, B. L., and Conn, E. E. (1980) J. Biol. Chem. 255, 3049-3056) shows the phenomenon of catalytic facilitation ("channeling"). Cytochrome P-450TYR is the first isolated multifunctional heme-thiolate
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.270.8.3506