Alpha 2-C10 adrenergic receptors expressed in rat 1 fibroblasts can regulate both adenylylcyclase and phospholipase D-mediated hydrolysis of phosphatidylcholine by interacting with pertussis toxin-sensitive guanine nucleotide-binding proteins

The alpha 2-C10 adrenergic receptor from human platelets was expressed permanently in Rat-1 fibroblasts. A series of clones that varied in expression of the receptor from 0 to 3.5 pmol/mg of membrane protein were isolated. We have demonstrated recently in cells of one of these clones (1C) that the a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 1992-02, Vol.267 (4), p.2149-2156
Hauptverfasser: MacNulty, E E, McClue, S J, Carr, I C, Jess, T, Wakelam, M J, Milligan, G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The alpha 2-C10 adrenergic receptor from human platelets was expressed permanently in Rat-1 fibroblasts. A series of clones that varied in expression of the receptor from 0 to 3.5 pmol/mg of membrane protein were isolated. We have demonstrated recently in cells of one of these clones (1C) that the alpha 2-C10 receptor interacts directly with two distinct pertussis toxin-sensitive G-proteins, Gi2 and Gi3 (Milligan, G., Carr, C., Gould, G. W., Mullaney, I., and Lavan, B.E. (1991) J. Biol. Chem. 266, 6447-6455). High affinity GTPase activity in membranes of cells from the various clones was stimulated by the addition of the alpha 2-adrenergic agonist UK14304, defining that the receptor coupled productively to the G-protein signaling system. Maximal stimulation of high affinity GTPase activity correlated with the levels of receptor expressed. Clones expressing the receptor also demonstrated agonist-mediated inhibition of adenylylcyclase. Futhermore, the alpha 2-C10 receptor in one clone (1C), but not other clones, promoted a marked stimulation in the generation of water-soluble products derived from phosphatidylcholine. The concentration of UK14304 required to produce half-maximal regulation of GTPase activity (20-30 nM), of forskolin-amplified adenylylcyclase activity (30-40 nM), and of choline generation (30-40 nM) were similar. Transphosphatidylation experiments with cells of clone 1C indicated that the receptor-mediated hydrolysis of phosphatidylcholine was via the action of a phospholipase D. All of these effects were attenuated by pretreatment of the cells with pertussis toxin. Dose-effect curves of pertussis toxin-treatment demonstrated similar effective concentrations of the toxin in causing endogenous ADP-ribosylation of both Gi2 and Gi3, inhibition of receptor-stimulated GTPase activity, and phospholipase D activity. Receptor activation of phospholipase D activity was not dependent upon prior phospholipase C-dependent activation of protein kinase C, as alpha 2-adrenergic stimulation of inositol phosphate production was negligible and the presence of the selective protein kinase C inhibitor RO-31-8220, at concentrations up to 10 microM, had no effect on UK14304-mediated production of phosphatidylbutanol. These results demonstrate that expression of the alpha 2-C10 receptor in a heterologous system can result in receptor regulation of signaling elements that appear not to be primary targets for the receptor in vivo. Such results are important in respec
ISSN:0021-9258
1083-351X
DOI:10.1016/S0021-9258(18)45856-5