Bacillus anthracis Exosporium Protein BclA Affects Spore Germination, Interaction with Extracellular Matrix Proteins, and Hydrophobicity
Bacillus collagen-like protein of anthracis (BclA) is the immunodominant glycoprotein on the exosporium of Bacillus anthracis spores. Here, we sought to assess the impact of BclA on spore germination in vitro and in vivo, surface charge, and interaction with host matrix proteins. For that purpose, w...
Gespeichert in:
Veröffentlicht in: | Infection and Immunity 2007-11, Vol.75 (11), p.5233-5239 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Bacillus collagen-like protein of anthracis (BclA) is the immunodominant glycoprotein on the exosporium of Bacillus anthracis spores. Here, we sought to assess the impact of BclA on spore germination in vitro and in vivo, surface charge, and interaction with host matrix proteins. For that purpose, we constructed a markerless bclA null mutant in B. anthracis Sterne strain 34F2. The growth and sporulation rates of the ΔbclA and parent strains were nearly indistinguishable, but germination of mutant spores occurred more rapidly than that of wild-type spores in vitro and was more complete by 60 min. Additionally, the mean time to death of A/J mice inoculated subcutaneously or intranasally with mutant spores was lower than that for the wild-type spores even though the 50% lethal doses of the two strains were similar. We speculated that these in vitro and in vivo differences between mutant and wild-type spores might reflect the ease of access of germinants to their receptors in the absence of BclA. We also compared the hydrophobic and adhesive properties of ΔbclA and wild-type spores. The ΔbclA spores were markedly less water repellent than wild-type spores, and, probably as a consequence, the extracellular matrix proteins laminin and fibronectin bound significantly better to mutant than to wild-type spores. These studies suggest that BclA acts as a shield to not only reduce the ease with which spores germinate but also change the surface properties of the spore, which, in turn, may impede the interaction of the spore with host matrix substances. |
---|---|
ISSN: | 0019-9567 1098-5522 |
DOI: | 10.1128/IAI.00660-07 |