Chinese agricultural technology transfer to African typical dry areas: practice and experience
Africa has experienced increasing aridity and higher frequency of droughts due to climate change during the half past century with possible adverse effects on agricultural production, especially in dry areas with low rainfall. Under the auspices of the Africa Water Action Program between the Chinese...
Gespeichert in:
Veröffentlicht in: | Frontiers of Agricultural Science and Engineering 2020, Vol.7 (4), p.440-454 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Africa has experienced increasing aridity and higher frequency of droughts due to climate change during the half past century with possible adverse effects on agricultural production, especially in dry areas with low rainfall. Under the auspices of the Africa Water Action Program between the Chinese Ministry of Science and Technology (MOST) and the United Nations Environment Program (UNEP), the Institute of Agricultural Environment and Resources, Shanxi Academy of Agricultural Sciences (SAAS-IAER) worked closely with domestic and overseas partners on technology transfer in Morocco, Zambia, Egypt, Niger and Ethiopia from 2008 to 2013. A drought early warning system has been established and validated, and drought adaptation technologies have been trialed, modified, demonstrated and extended in African countries, and this shows great potential to increase crop production, water and fertilizer use efficiency and desert control in rainfed areas of Africa. The project has continued for six years and is a successful case of technology transfer and capacity building in Africa. The knowledge and experience gained will be useful to researchers, technicians, aid agencies and policy makers who work on agricultural technology transfer for in dry areas of Africa. |
---|---|
ISSN: | 2095-7505 2095-977X |
DOI: | 10.15302/J-FASE-2020353 |