Effect of mulching with maize straw on water infiltration and soil loss at different initial soil moistures in a rainfall simulation

Mulching and soil water content(SWC) have a significant impact on soil erosion,and this study investigated the effect of straw mulching on water infiltration and soil loss under different initial SWC treatments in a rainfall simulation experiment conducted in northern China.Increasing initial SWC ca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers of Agricultural Science and Engineering 2016-06, Vol.3 (2), p.161-170
Hauptverfasser: ZHANG, Yifu, LI, Hongwen, HE, Jin, WANG, Qingjie, CHEN, Ying, CHEN, Wanzhi, MA, Shaochun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mulching and soil water content(SWC) have a significant impact on soil erosion,and this study investigated the effect of straw mulching on water infiltration and soil loss under different initial SWC treatments in a rainfall simulation experiment conducted in northern China.Increasing initial SWC can decrease soil infiltration and increase soil loss.During an 80 mm rainfall event(80 mm·h–1for 60 min),8%,12% and 16% initial SWC treatments decreased cumulative infiltration by8.7%,42.5% and 58.1%,and increased total sediment yield by 44,146 and 315 g,respectively,compared to 4%initial SWC.However,in all the straw mulching treatments,there was no significant difference in stable infiltration rate between the different initial SWC treatments.For all initial SWC treatments,straw mulching of30% or more significantly enhanced water infiltration by over 31% and reduced soil loss by over 49%,compared to the unmulched treatment.Taking into consideration the performance of no-till planters,a maize straw mulching rate of 30% to 60%(1400–3100 kg·hm–2) is recommended for the conservation of water and soil in northern China.
ISSN:2095-7505
2095-977X
DOI:10.15302/J-FASE-2016104