HLA-B35-Px–mediated Acceleration of HIV-1 Infection by Increased Inhibitory Immunoregulatory Impulses

A subset of HLA-B*35 alleles, B*35-Px, are strongly associated with accelerated HIV-1 disease progression for reasons that are not understood. Interestingly, the alternative set of B*35 subtypes, B*35-PY, have no detectable impact on HIV-1 disease outcomes, even though they can present identical HIV...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Goedert, James J, Sundberg, Eric J, Cung, Thai Duong Hong, Burke, Patrick S, Preiss, Liliana, Lifson, Jeffrey, Carrington, Mary, Huang, Jinghe, Martin, Maureen P, Lichterfeld, Mathias, Yu, Xu
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A subset of HLA-B*35 alleles, B*35-Px, are strongly associated with accelerated HIV-1 disease progression for reasons that are not understood. Interestingly, the alternative set of B*35 subtypes, B*35-PY, have no detectable impact on HIV-1 disease outcomes, even though they can present identical HIV-1 epitopes as B*35-Px molecules. Thus, the differential impact of these alleles on HIV-1 disease progression may be unrelated to interactions with HIV-1–specific CD8+ T cells. Here, we show that the B*35-Px molecule B*3503 binds with greater affinity to immunoglobulin-like transcript 4 (ILT4), an inhibitory MHC class I receptor expressed on dendritic cells, than does the B*35-PY molecule B*3501, even though these two B*35 molecules differ by only one amino acid and present identical HIV-1 epitopes. The preferential recognition of B*3503 by ILT4 was associated with significantly stronger dendritic cell dysfunction in in vitro functional assays. Moreover, HIV-1–infected carriers of B*3503 had poor dendritic cell functional properties in ex vivo assessments when compared with carriers of the B*3501 allele. Differential interactions between HLA class I allele subtypes and immunoregulatory MHC class I receptors on dendritic cells thus provide a novel perspective for the understanding of MHC class I associations with HIV-1 disease progression and for the manipulation of host immunity against HIV-1.
ISSN:0022-1007
DOI:10.1084/jem.20091386