Models for Truthful Online Double Auctions

Online double auctions (DAs) model a dynamic two-sided matching problem with private information and self-interest, and are relevant for dynamic resource and task allocation problems. We present a general method to design truthful DAs, such that no agent can benefit from misreporting its arrival tim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bredin, Jonathan, Parkes, David C
Format: Buch
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Online double auctions (DAs) model a dynamic two-sided matching problem with private information and self-interest, and are relevant for dynamic resource and task allocation problems. We present a general method to design truthful DAs, such that no agent can benefit from misreporting its arrival time, duration, or value. The family of DAs is parameterized by a pricing rule, and includes a generalization of McAfee’s truthful DA to this dynamic setting. We present an empirical study, in which we study the allocative-surplus and agent surplus for a number of different DAs. Our results illustrate that dynamic pricing rules are important to provide good market efficiency for markets with high volatility or low volume.