Models for Truthful Online Double Auctions
Online double auctions (DAs) model a dynamic two-sided matching problem with private information and self-interest, and are relevant for dynamic resource and task allocation problems. We present a general method to design truthful DAs, such that no agent can benefit from misreporting its arrival tim...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | eng |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Online double auctions (DAs) model a dynamic two-sided matching problem with private information and self-interest, and are relevant for dynamic resource and task allocation problems. We present a general method to design truthful DAs, such that no agent can benefit from misreporting its arrival time, duration, or value. The family of DAs is parameterized by a pricing rule, and includes a generalization of McAfee’s truthful DA to this dynamic setting. We present an empirical study, in which we study the allocative-surplus and agent surplus for a number of different DAs. Our results illustrate that dynamic pricing rules are important to provide good market efficiency for markets with high volatility or low volume. |
---|