The Processes of Melt Differentiation in Arc Volcanic Rocks: Insights from OIB-type Arc Magmas in the Central Mexican Volcanic Belt

Andesite petrogenesis is inextricably linked to plate processing at convergent margins. The details of andesite formation, however, remain poorly understood because the signatures of the initial arc mantle melts are often modified in the overlying crust. To distinguish initial mantle from crustal si...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Straub, S. M, Gomez-Tuena, A, Zellmer, G. F, Espinasa-Perena, R, Stuart, F. M, Cai, Y, Langmuir, Charles H, Martin-Del Pozzo, A. L, Mesko, G. T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Andesite petrogenesis is inextricably linked to plate processing at convergent margins. The details of andesite formation, however, remain poorly understood because the signatures of the initial arc mantle melts are often modified in the overlying crust. To distinguish initial mantle from crustal signatures in arc magmas, we studied two compositionally zoned Holocene monogenetic volcanoes, Texcal Flow and Volcan Chichinautzin, in the central Mexican Volcanic Belt (MVB). Texcal Flow and V. Chichinautzin erupt ‘ocean island basalt (OIB)-type’, high-Nb (17–36 ppm), olivine-phyric basalts to basaltic andesites (49·4–57·3 wt % SiO2; Mg# = 68–50) that show an arc affinity in their major element oxides. At both volcanoes melt SiO2 increases with time. However, systematic changes of melt SiO2 with 87Sr/86Sr and 143Nd/144Nd, the overall low 87Sr/86Sr = 0·70305–0·70453 and high 143Nd/144Nd = 0·51273–0·51299 relative to continental crust, and the high 3He/4He = 7–8 Ra of olivine phenocrysts preclude melt silica enrichment by crustal assimilation and fractional crystallization. Instead, the data require the existence of silicic initial mantle melts. The high Ni abundances of olivines suggest that the silicic melts originate from segregations of ‘reaction pyroxenites’ that formed in the peridotite mantle wedge following multiple infiltrations of silicic slab components. Sequential melting of zoned silica-deficient to silica-excess pyroxenites can reproduce the time-progressive evolution of melt silica content at Texcal Flow and V. Chichinautzin. As initial melts always have high Mg# > 70 regardless of their SiO2 content, the low-Mg# values of the magmas erupted must reflect loss of moderate amounts (
ISSN:0022-3530
DOI:10.1093/petrology/egs081