Smoking is associated with the concurrent presence of multiple autoantibodies in rheumatoid arthritis rather than with anti-citrullinated protein antibodies per se: a multicenter cohort study
Background: The contribution of smoking to rheumatoid arthritis (RA) is hypothesized to be mediated through formation of anti-citrullinated protein antibodies (ACPA). In RA, however, autoantibodies such as ACPA, rheumatoid factor (RF), and anti-carbamylated protein antibodies (anti-CarP) often occur...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , , , , , , , , |
---|---|
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Background: The contribution of smoking to rheumatoid arthritis (RA) is hypothesized to be mediated through formation of anti-citrullinated protein antibodies (ACPA). In RA, however, autoantibodies such as ACPA, rheumatoid factor (RF), and anti-carbamylated protein antibodies (anti-CarP) often occur together, and it is thus unclear whether smoking is specifically associated with some autoantibodies rather than others. We therefore investigated whether smoking is only associated with ACPA or with the presence of multiple RA-related autoantibodies. Methods: A population-based Japanese cohort (n = 9575) was used to investigate the association of smoking with RF and anti-cyclic citrullinated peptide antibodies (anti-CCP2) in individuals without RA. Furthermore, RA patients fulfilling the 1987 criteria from three early arthritis cohorts from the Netherlands (n = 678), the United Kingdom (n = 761), and Sweden (n = 795) were used. Data on smoking, RF, anti-CCP2, and anti-CarP were available. A total score of autoantibodies was calculated, and odds ratios (ORs) and 95% confidence intervals (95% CIs) were calculated by logistic regression. Results: In the population-based non-RA cohort, no association was found between smoking and one autoantibody (RF or anti-CCP2), but smoking was associated with double-autoantibody positivity (OR 2.95, 95% CI 1.32–6.58). In RA patients, there was no association between smoking and the presence of one autoantibody (OR 0.99, 95% CI 0.78–1.26), but smoking was associated with double-autoantibody positivity (OR 1.32, 95% CI 1.04–1.68) and triple-autoantibody positivity (OR 2.05, 95% CI 1.53–2.73). Conclusions: Smoking is associated with the concurrent presence of multiple RA-associated autoantibodies rather than just ACPA. This indicates that smoking is a risk factor for breaking tolerance to multiple autoantigens in RA. Electronic supplementary material The online version of this article (doi:10.1186/s13075-016-1177-9) contains supplementary material, which is available to authorized users. |
---|---|
ISSN: | 1478-6354 |
DOI: | 10.1186/s13075-016-1177-9 |