A framework for the interpretation of de novo mutation in human disease
Spontaneously arising (‘de novo’) mutations play an important role in medical genetics. For diseases with extensive locus heterogeneity – such as autism spectrum disorders (ASDs) – the signal from de novo mutations (DNMs) is distributed across many genes, making it difficult to distinguish disease-r...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Spontaneously arising (‘de novo’) mutations play an important role in medical genetics. For diseases with extensive locus heterogeneity – such as autism spectrum disorders (ASDs) – the signal from de novo mutations (DNMs) is distributed across many genes, making it difficult to distinguish disease-relevant mutations from background variation. We provide a statistical framework for the analysis of DNM excesses per gene and gene set by calibrating a model of de novo mutation. We applied this framework to DNMs collected from 1,078 ASD trios and – while affirming a significant role for loss-of-function (LoF) mutations – found no excess of de novo LoF mutations in cases with IQ above 100, suggesting that the role of DNMs in ASD may reside in fundamental neurodevelopmental processes. We also used our model to identify ~1,000 genes that are significantly lacking functional coding variation in non-ASD samples and are enriched for de novo LoF mutations identified in ASD cases. |
---|---|
ISSN: | 1061-4036 |
DOI: | 10.1038/ng.3050 |