A melanocyte lineage program confers resistance to MAP kinase pathway inhibition
BRAFV600E-mutant malignant melanomas depend on RAF/MEK/ERK (MAPK) signaling for tumor cell growth1. RAF and MEK inhibitors show remarkable clinical efficacy in BRAFV600E melanoma2, 3; however, resistance to these agents remains a formidable challenge2, 4. Global characterization of resistance mechan...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , , |
---|---|
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | BRAFV600E-mutant malignant melanomas depend on RAF/MEK/ERK (MAPK) signaling for tumor cell growth1. RAF and MEK inhibitors show remarkable clinical efficacy in BRAFV600E melanoma2, 3; however, resistance to these agents remains a formidable challenge2, 4. Global characterization of resistance mechanisms may inform the development of more effective therapeutic combinations. Here, we performed systematic gain-of-function resistance studies by expressing >15,500 genes individually in a BRAFV600E melanoma cell line treated with RAF, MEK, ERK, or combined RAF/MEK inhibitors. These studies revealed a cyclic AMP-dependent melanocytic signaling network not previously associated with drug resistance, including G-protein coupled receptors, adenyl cyclase, protein kinase A and cAMP response element binding protein (CREB). Preliminary analysis of biopsies from BRAFV600E melanoma patients revealed that phosphorylated (active) CREB was suppressed by RAF/MEK-inhibition but restored in relapsing tumors. Expression of transcription factors activated downstream of MAP kinase and cAMP pathways also conferred resistance, including c-FOS, NR4A1, NR4A2 and MITF. Combined treatment with MAP kinase pathway and histone deacetylase inhibitors suppressed MITF expression and cAMP-mediated resistance. Collectively, these data suggest that oncogenic dysregulation of a melanocyte lineage dependency can cause resistance to RAF/MEK/ERK inhibition, which may be overcome by combining signaling- and chromatin-directed therapeutics. |
---|---|
ISSN: | 0028-0836 |
DOI: | 10.1038/nature12688 |