Single-File Diffusion of Flagellin in Flagellar Filaments
A bacterial flagellar filament is a cylindrical crystal of a protein known as flagellin. Flagellin subunits travel from the cytoplasm through a 2 nm axial pore and polymerize at the filament’s distal end. They are supplied by a pump in the cell membrane powered by a proton-motive force. In a recent...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A bacterial flagellar filament is a cylindrical crystal of a protein known as flagellin. Flagellin subunits travel from the cytoplasm through a 2 nm axial pore and polymerize at the filament’s distal end. They are supplied by a pump in the cell membrane powered by a proton-motive force. In a recent experiment, it was observed that growth proceeded at a rate of approximately one subunit every 2 s. Here, we asked whether transport of subunits through the pore at this rate could be effected by single-file diffusion, which we simulated by a random walk on a one-dimensional lattice. Assuming that the subunits are α-helical, the answer is yes, by a comfortable margin. |
---|---|
ISSN: | 0006-3495 1542-0086 |
DOI: | 10.1016/j.bpj.2013.05.030 |