Language Universals Engage Broca's Area
It is well known that natural languages share certain aspects of their design. For example, across languages, syllables like blif are preferred to lbif. But whether language universals are myths or mentally active constraints—linguistic or otherwise—remains controversial. To address this question, w...
Gespeichert in:
Hauptverfasser: | , , , , , , , |
---|---|
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | It is well known that natural languages share certain aspects of their design. For example, across languages, syllables like blif are preferred to lbif. But whether language universals are myths or mentally active constraints—linguistic or otherwise—remains controversial. To address this question, we used fMRI to investigate brain response to four syllable types, arrayed on their linguistic well-formedness (e.g., blif≻bnif≻bdif≻lbif, where ≻ indicates preference). Results showed that syllable structure monotonically modulated hemodynamic response in Broca's area, and its pattern mirrored participants' behavioral preferences. In contrast, ill-formed syllables did not systematically tax sensorimotor regions—while such syllables engaged primary auditory cortex, they tended to deactivate (rather than engage) articulatory motor regions. The convergence between the cross-linguistic preferences and English participants' hemodynamic and behavioral responses is remarkable given that most of these syllables are unattested in their language. We conclude that human brains encode broad restrictions on syllable structure. |
---|---|
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0095155 |