Some investigations into the optimal dimensional synthesis of parallel robots

In this paper, we will perform a comparison between two approaches of dimensional synthesis of parallel robots. The first one concerns the single-objective optimization approach; in this case, the dimensional synthesis is expressed by taking into account only one performance criterion but enables to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced manufacturing technology 2016-04, Vol.83 (9-12), p.1525-1538
Hauptverfasser: Kelaiaia, Ridha, Zaatri, Abdelouahab, Company, Olivier, Chikh, Lotfi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we will perform a comparison between two approaches of dimensional synthesis of parallel robots. The first one concerns the single-objective optimization approach; in this case, the dimensional synthesis is expressed by taking into account only one performance criterion but enables to get a final solution if it exists. The second one concerns the multi-objective optimization approach; it enables to simultaneously take into account several performance criteria. However, this approach appears to provide a set of solutions instead of a single expected final solution which should directly enable to carry out the structural synthesis. In fact, the search of a single final solution is postponed to a further step where the designers have to impose and/or restrict certain parameters. And we will establish if it is really necessary to make a multi-objective optimization approach or if a single-objective is sufficient to reach the objectives set in the specifications (user requirements). A discussion is proposed concerning the arising questions related to each approach and leading to the optimal dimensional synthesis. The PAR2 robot with two degree-of-freedom is used to exemplify the analysis and the comparison of the two approaches. The proposed comparison can be applied to any classes of parallel robots.
ISSN:0268-3768
1433-3015
DOI:10.1007/s00170-015-7611-3