A complexity and approximation framework for the maximization scaffolding problem

We explore in this paper some complexity issues inspired by the contig scaffolding problem in bioinformatics. We focus on the following problem: given an undirected graph with no loop, and a perfect matching on this graph, find a set of cycles and paths covering every vertex of the graph, with edges...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical computer science 2015-08, Vol.595, p.92-106
Hauptverfasser: Chateau, A., Giroudeau, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We explore in this paper some complexity issues inspired by the contig scaffolding problem in bioinformatics. We focus on the following problem: given an undirected graph with no loop, and a perfect matching on this graph, find a set of cycles and paths covering every vertex of the graph, with edges alternatively in the matching and outside the matching, and satisfying a given constraint on the numbers of cycles and paths. We show that this problem is NP-complete, even in planar bipartite graphs. Moreover, we show that there is no subexponential-time algorithm for several related problems unless the Exponential-Time Hypothesis fails. Lastly, we also design two polynomial-time approximation algorithms for complete graphs.
ISSN:0304-3975
1879-2294
DOI:10.1016/j.tcs.2015.06.023