A complexity and approximation framework for the maximization scaffolding problem
We explore in this paper some complexity issues inspired by the contig scaffolding problem in bioinformatics. We focus on the following problem: given an undirected graph with no loop, and a perfect matching on this graph, find a set of cycles and paths covering every vertex of the graph, with edges...
Gespeichert in:
Veröffentlicht in: | Theoretical computer science 2015-08, Vol.595, p.92-106 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We explore in this paper some complexity issues inspired by the contig scaffolding problem in bioinformatics. We focus on the following problem: given an undirected graph with no loop, and a perfect matching on this graph, find a set of cycles and paths covering every vertex of the graph, with edges alternatively in the matching and outside the matching, and satisfying a given constraint on the numbers of cycles and paths. We show that this problem is NP-complete, even in planar bipartite graphs. Moreover, we show that there is no subexponential-time algorithm for several related problems unless the Exponential-Time Hypothesis fails. Lastly, we also design two polynomial-time approximation algorithms for complete graphs. |
---|---|
ISSN: | 0304-3975 1879-2294 |
DOI: | 10.1016/j.tcs.2015.06.023 |