Near-infrared emission line diagnostics for AGN from the local Universe to z ∼ 3
Optical rest-frame spectroscopic diagnostics are usually employed to distinguish between star formation and active galactic nucleus (AGN) powered emission. However, this method is biased against dusty sources, hampering a complete census of the AGN population across cosmic epochs. To mitigate this e...
Gespeichert in:
Veröffentlicht in: | Astronomy and astrophysics (Berlin) 2023-11, Vol.679, p.A80 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Optical rest-frame spectroscopic diagnostics are usually employed to distinguish between star formation and active galactic nucleus (AGN) powered emission. However, this method is biased against dusty sources, hampering a complete census of the AGN population across cosmic epochs. To mitigate this effect, it is crucial to observe at longer wavelengths in the rest-frame near-infrared (near-IR), which is less affected by dust attenuation and can thus provide a better description of the intrinsic properties of galaxies. AGN diagnostics in this regime have not been fully exploited so far, due to the scarcity of near-IR observations of both AGN and star-forming galaxies, especially at redshifts higher than 0.5. Using Cloudy photoionization models, we identified new AGN – star formation diagnostics based on the ratio of bright near-IR emission lines, namely [SIII] 9530 Å, [CI] 9850 Å, [PII] 1.188 μm, [FeII] 1.257 μm, and [FeII] 1.64 μm to Paschen lines (either Pa
γ
or Pa
β
), providing simple, analytical classification criteria. We applied these diagnostics to a sample of 64 star-forming galaxies and AGN at 0 ≤
z
≤ 1, and 65 sources at 1 ≤
z
≤ 3 recently observed with JWST-NIRSpec in CEERS. We find that the classification inferred from the near-IR is broadly consistent with the optical one based on the BPT and the [SII]/H
α
ratio. However, in the near-IR, we find ∼60% more AGN than in the optical (13 instead of eight), with five sources classified as “hidden” AGN, showing a larger AGN contribution at longer wavelengths, possibly due to the presence of optically thick dust. The diagnostics we present provide a promising tool to find and characterize AGN from
z
= 0 to
z
≃ 3 with low- and medium-resolution near-IR spectrographs in future surveys. |
---|---|
ISSN: | 0004-6361 1432-0746 1432-0756 |
DOI: | 10.1051/0004-6361/202347190 |