Lithium and boron diffusivity and isotopic fractionation in hydrated rhyolitic melts

Lithium and boron are trace components of magmas, released during exsolution of a gas phase during volcanic activity. In this study, we determine the diffusivity and isotopic fractionation of Li and B in hydrous silicate melts. Two glasses were synthesized with the same rhyolitic composition (4.2 wt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Contributions to mineralogy and petrology 2022-08, Vol.177 (8), Article 74
Hauptverfasser: Spallanzani, Roberta, Koga, Kenneth T., Cichy, Sarah B., Wiedenbeck, Michael, Schmidt, Burkhard C., Oelze, Marcus, Wilke, Max
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Lithium and boron are trace components of magmas, released during exsolution of a gas phase during volcanic activity. In this study, we determine the diffusivity and isotopic fractionation of Li and B in hydrous silicate melts. Two glasses were synthesized with the same rhyolitic composition (4.2 wt% water), having different Li and B contents; these were studied in diffusion-couple experiments that were performed using an internally heated pressure vessel, operated at 300 MPa in the temperature range 700–1250 °C for durations from 0 s to 24 h. From this we determined activation energies for Li and B diffusion of 57 ± 4 kJ/mol and 152 ± 15 kJ/mol with pre-exponential factors of 1.53 × 10 –7 m 2 /s and 3.80 × 10 –8 m 2 /s, respectively. Lithium isotopic fractionation during diffusion gave β values between 0.15 and 0.20, whereas B showed no clear isotopic fractionation. Our Li diffusivities and isotopic fractionation results differ somewhat from earlier published values, but overall confirm that Li diffusivity increases with water content. Our results on B diffusion show that similarly to Li, B mobility increases in the presence of water. By applying the Eyring relation, we confirm that B diffusivity is limited by viscous flow in silicate melts. Our results on Li and B diffusion present a new tool for understanding degassing-related processes, offering a potential geospeedometer to measure volcanic ascent rates.
ISSN:0010-7999
1432-0967
DOI:10.1007/s00410-022-01937-2