Insights into formation scenarios of massive early-type galaxies from spatially resolved stellar population analysis in CALIFA
We perform spatially resolved stellar population analysis for a sample of 69 early-type galaxies (ETGs) from the CALIFA integral field spectroscopic survey, including 48 ellipticals and 21 S0’s. We generate and quantitatively characterize profiles of light-weighted mean stellar age and metallicity w...
Gespeichert in:
Veröffentlicht in: | Monthly notices of the Royal Astronomical Society 2020-01, Vol.491 (3), p.3562-3585 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We perform spatially resolved stellar population analysis for a sample of 69 early-type galaxies (ETGs) from the CALIFA integral field spectroscopic survey, including 48 ellipticals and 21 S0’s. We generate and quantitatively characterize profiles of light-weighted mean stellar age and metallicity within ≲2Re, as a function of radius and stellar-mass surface density μ*. We study in detail the dependence of profiles on galaxies’ global properties, including velocity dispersion σe, stellar mass, morphology. ETGs are universally characterized by strong, negative metallicity gradients ($\sim \!-0.3\, \text{dex}$ per Re) within 1Re, which flatten out moving towards larger radii. A quasi-universal local μ*–metallicity relation emerges, which displays a residual systematic dependence on σe, whereby higher σe implies higher metallicity at fixed μ*. Age profiles are typically U-shaped, with minimum around 0.4 Re, asymptotic increase to maximum ages beyond $\sim 1.5\, $Re, and an increase towards the centre. The depth of the minimum and the central increase anticorrelate with σe. A possible qualitative interpretation of these observations is a two-phase scenario. In the first phase, dissipative collapse occurs in the inner 1Re, establishing a negative metallicity gradient. The competition between the outside-in quenching due to feedback-driven winds and some form of inside-out quenching, possibly caused by central AGN feedback or dynamical heating, determines the U-shaped age profiles. In the second phase, the accretion of ex-situ stars from quenched and low-metallicity satellites shapes the flatter stellar population profiles in the outer regions. |
---|---|
ISSN: | 0035-8711 1365-2966 |
DOI: | 10.1093/mnras/stz3205 |