Latitudinal variation in the abundance of methane (CH4) above the clouds in Neptune's atmosphere from VLT/MUSE Narrow Field Mode Observations

Observations of Neptune, made in 2018 using the new Narrow Field Adaptive Optics mode of the Multi Unit Spectroscopic Explorer (MUSE) instrument at the Very Large Telescope (VLT) from 0.48 to 0.93 μm, are analysed here to determine the latitudinal and vertical distribution of cloud opacity and metha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Icarus (New York, N.Y. 1962) N.Y. 1962), 2019-10, Vol.331 (October), p.69-82
Hauptverfasser: Irwin, Patrick G.J., Toledo, Daniel, Braude, Ashwin S., Bacon, Roland, Weilbacher, Peter M., Teanby, Nicholas A., Fletcher, Leigh N., Orton, Glenn S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Observations of Neptune, made in 2018 using the new Narrow Field Adaptive Optics mode of the Multi Unit Spectroscopic Explorer (MUSE) instrument at the Very Large Telescope (VLT) from 0.48 to 0.93 μm, are analysed here to determine the latitudinal and vertical distribution of cloud opacity and methane abundance in Neptune's observable troposphere (0.1–∼ 3bar). Previous observations at these wavelengths in 2003 by HST/STIS (Karkoschka and Tomasko 2011, Icarus 205, 674–694) found that the mole fraction of methane above the cloud tops (at ∼ 2 bar) varied from ∼ 4% at equatorial latitudes to ∼ 2% at southern polar latitudes, by comparing the observed reflectivity at wavelengths near 825 nm controlled primarily by either methane absorption or H2–H2/H2–He collision-induced absorption. We find a similar variation in cloud-top methane abundance in 2018, which suggests that this depletion of methane towards Neptune's pole is potentially a long-lived feature, indicative of long-term upwelling at mid-equatorial latitudes and subsidence near the poles. By analysing these MUSE observations along the central meridian with a retrieval model, we demonstrate that a broad boundary between the nominal and depleted methane abundances occurs at between 20 and 40°S. We also find a small depletion of methane near the equator, perhaps indicating subsidence there, and a local enhancement near 60–70°S, which we suggest may be associated with South Polar Features (SPFs) seen in Neptune's atmosphere at these latitudes. Finally, by the use of both a reflectivity analysis and a principal component analysis, we demonstrate that this depletion of methane towards the pole is apparent at all locations on Neptune's disc, and not just along its central meridian. •First detection from ground of latitudinal variation of methane above Neptune's clouds.•Observations made with new Narrow Field Mode of VLT/MUSE with adaptive optics.•Mole fraction of methane at ∼2 bar found to fall from ∼5.•Broad boundary between two methane abundances found to be at 20–40°S.•Latitudinal variation of methane also discernable in principal component analysis.
ISSN:0019-1035
1090-2643
DOI:10.1016/j.icarus.2019.05.011