Virial expansion of the electrical conductivity of hydrogen plasmas
The low-density limit of the electrical conductivity σ (n ,T ) of hydrogen as the simplest ionic plasma is presented as a function of the temperature T and mass density n in the form of a virial expansion of the resistivity. Quantum statistical methods yield exact values for the lowest virial coeffi...
Gespeichert in:
Veröffentlicht in: | Physical review. E 2021-10, Vol.104 (4), p.045204-045204, Article 045204 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The low-density limit of the electrical conductivity σ (n ,T ) of hydrogen as the simplest ionic plasma is presented as a function of the temperature T and mass density n in the form of a virial expansion of the resistivity. Quantum statistical methods yield exact values for the lowest virial coefficients which serve as a benchmark for analytical approaches to the electrical conductivity as well as for numerical results obtained from density functional theory-based molecular dynamics simulations (DFT-MD) or path-integral Monte Carlo simulations. While these simulations are well suited to calculate σ (n ,T ) in a wide range of density and temperature, in particular, for the warm dense matter region, they become computationally expensive in the low-density limit, and virial expansions can be utilized to balance this drawback. We present new results of DFT-MD simulations in that regime and discuss the account of electron-electron collisions by comparison with the virial expansion. |
---|---|
ISSN: | 2470-0045 2470-0053 |
DOI: | 10.1103/PhysRevE.104.045204 |