The chemical structure of the Class 0 protostellar envelope NGC 1333 IRAS 4A

Context. It is not well known what drives the chemistry of a protostellar envelope, in particular the role of the stellar mass and the protostellar outflows on the chemical enrichment of such environments. Aims. We study the chemical structure of the Class 0 protostellar envelope NGC 1333 IRAS 4A in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astronomy and astrophysics (Berlin) 2017-07, Vol.603, p.A88
Hauptverfasser: Koumpia, E., Semenov, D. A., van der Tak, F. F. S., Boogert, A. C. A., Caux, E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Context. It is not well known what drives the chemistry of a protostellar envelope, in particular the role of the stellar mass and the protostellar outflows on the chemical enrichment of such environments. Aims. We study the chemical structure of the Class 0 protostellar envelope NGC 1333 IRAS 4A in order to (i) investigate the influence of the outflows on the chemistry; (ii) constrain the age of our studied object; (iii) compare it with a typical high–mass protostellar envelope. Methods. In our analysis we use JCMT line mapping (360–373 GHz) and HIFI pointed spectra (626.01–721.48 GHz). To study the influence of the outflow on the degree of deuteration, we compare JCMT maps of HCO+ and DCO+ with non-LTE (RADEX) models in a region that spatially covers the outflow activity of IRAS 4A. To study the envelope chemistry, we derive empirical molecular abundance profiles for the observed species using the Monte Carlo radiative transfer code (RATRAN) and adopting a 1D dust density/temperature profile from the literature. We use a combination of constant abundance profiles and abundance profiles that include jumps at two radii (T ~ 100 K or T ~ 30 K) to fit our observations. We compare our best–fit observed abundance profiles with the predictions from the time dependent gas grain chemical code (ALCHEMIC). Results. We detect CO, 13CO, C18O, CS, HCN, HCO+, N2H+, H2CO, CH3OH, H2O, H2S, DCO+, HDCO, D2CO, SO, SO2, SiO, HNC, CN, C2H and OCS. We divide the detected lines in three groups based on their line profiles: a) broad emission (FWHM = 4–11 km s-1), b) narrow emission (FWHM< 4 km s-1), and c) showing absorption features. The broad component is indicative of outflow activity, the narrow component arises from dynamically quiescent gas (i.e. envelope) and the absorption is a result of infall motions or the presence of foreground material. Our maps provide information about the spatial and velocity structure of many of the molecules mentioned above, including the deuterated species, making it possible to distinguish between envelope and outflow structures also spatially. The derived abundance profiles are based only on the narrow component (envelope) of the species and are reproduced by a 1D pseudo-time-dependent gas-grain chemical model for the outer envelope, with the exceptions of HCN, HNC, CN. These species along with the CO abundance require an enhanced UV field which points towards an outflow cavity. The abundances with respect to H2 are 1 to 2 orders of magnitud
ISSN:0004-6361
1432-0746
1432-0756
DOI:10.1051/0004-6361/201630160