A search for methane in the atmosphere of GJ 1214b via GTC narrow-band transmission spectrophotometry
We present narrow-band photometric measurements of the exoplanet GJ 1214b using the 10.4 m Gran Telescopio Canarias and the Optical System for Imaging and low Resolution Integrated Spectroscopy instrument. Using tuneable filters, we observed a total of five transits, three of which were observed at...
Gespeichert in:
Veröffentlicht in: | Monthly notices of the Royal Astronomical Society 2014-03, Vol.438 (3), p.2395-2405 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present narrow-band photometric measurements of the exoplanet GJ 1214b using the 10.4 m Gran Telescopio Canarias and the Optical System for Imaging and low Resolution Integrated Spectroscopy instrument. Using tuneable filters, we observed a total of five transits, three of which were observed at two wavelengths nearly simultaneously, producing a total of eight individual light curves, six of these probed the possible existence of a methane absorption feature in the 8770-8850 Å region at high resolution. We detect no increase in the planet-to-star radius ratio across the methane feature with a change in radius ratio of
corresponding to a scaleheight (H) change of −0.5 ± 1.2H across the methane feature, assuming a hydrogen-dominated atmosphere. We find that a variety of water and cloudy atmospheric models fit the data well, but find that cloud-free models provide poor fits. These observations support a flat transmission spectrum resulting from the presence of a high-altitude haze or a water-rich atmosphere, in agreement with previous studies. In this study, the observations are pre-dominantly limited by the photometric quality and the limited number of data points (resulting from a long observing cadence), which make the determination of the systematic noise challenging. With tuneable filters capable of high-resolution measurements (R 600-750) of narrow absorption features, the interpretation of our results are also limited by the absence of high-resolution methane models below 1 μm. |
---|---|
ISSN: | 0035-8711 1365-2966 |
DOI: | 10.1093/mnras/stt2356 |