The search for radio emission from the exoplanetary systems 55 Cancri, υ Andromedae, and τ Boötis using LOFAR beam-formed observations

Context. The detection of radio emissions from exoplanets will open up a vibrant new research field. Observing planetary auroral radio emission is the most promising method to detect exoplanetary magnetic fields, the knowledge of which will provide valuable insights into the planet’s interior struct...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astronomy and astrophysics (Berlin) 2021-01, Vol.645, p.A59
Hauptverfasser: Turner, Jake D., Zarka, Philippe, Grießmeier, Jean-Mathias, Lazio, Joseph, Cecconi, Baptiste, Emilio Enriquez, J., Girard, Julien N., Jayawardhana, Ray, Lamy, Laurent, Nichols, Jonathan D., de Pater, Imke
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Context. The detection of radio emissions from exoplanets will open up a vibrant new research field. Observing planetary auroral radio emission is the most promising method to detect exoplanetary magnetic fields, the knowledge of which will provide valuable insights into the planet’s interior structure, atmospheric escape, and habitability. Aims. We present LOFAR (LOw-Frequency ARray) Low Band Antenna (LBA: 10–90 MHz) circularly polarized beamformed observations of the exoplanetary systems 55 Cancri, υ Andromedae, and τ Boötis. All three systems are predicted to be good candidates to search for exoplanetary radio emission. Methods. We applied the BOREALIS pipeline that we have developed to mitigate radio frequency interference and searched for both slowly varying and bursty radio emission. Our pipeline has previously been quantitatively benchmarked on attenuated Jupiter radio emission. Results. We tentatively detect circularly polarized bursty emission from the τ Boötis system in the range 14–21 MHz with a flux density of ~890 mJy and with a statistical significance of ~3 σ . For this detection, we do not see any signal in the OFF-beams, and we do not find any potential causes which might cause false positives. We also tentatively detect slowly variable circularly polarized emission from τ Boötis in the range 21–30 MHz with a flux density of ~400 mJy and with a statistical significance of >8 σ . The slow emission is structured in the time-frequency plane and shows an excess in the ON-beam with respect to the two simultaneous OFF-beams. While the bursty emission seems rather robust, close examination casts some doubts on the reality of the slowly varying signal. We discuss in detail all the arguments for and against an actual detection, and derive methodological tests that will also apply to future searches. Furthermore, a ~2 σ marginal signal is found from the υ Andromedae system in one observation of bursty emission in the range 14–38 MHz and no signal is detected from the 55 Cancri system, on which we placed a 3 σ upper limit of 73 mJy for the flux density at the time of the observation. Conclusions. Assuming the detected signals are real, we discuss their potential origin. Their source probably is the τ Boötis planetary system, and a possible explanation is radio emission from the exoplanet τ Boötis b via the cyclotron maser mechanism. Assuming a planetary origin, we derived limits for the planetary polar surface magnetic field strength, finding values
ISSN:0004-6361
1432-0746
1432-0756
DOI:10.1051/0004-6361/201937201